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Abstract

Skeleton representation of an object is believed to be a powerful representation that captures
both boundary and region information of the object� The skeleton of a shape is a representation
composed of idealized thin lines that preserve the connectivity or topology of the original shape�
Although the literature contains a large number of skeletonization algorithms� many open problems
remain� In this paper� a new skeletonization approach that relies on the Electrostatic Field Theory
�EFT� is proposed� Many problems associated with existing skeletonization algorithms are solved
using the proposed approach� In particular� connectivity� thinness� and other desirable features
of a skeleton are guaranteed� Furthermore� the electrostatic �eld�based approach captures notions
of corner detection� multiple scale� thinning� and skeletonization all within one uni�ed framework�
Experimental results are very encouraging and are used to illustrate the potential of the proposed
approach�
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I� Introduction

Shape representation and description plays an important role in most computer vision systems�
A useful and reliable shape representation must meet a number of requirements� which include
invariance� uniqueness� and stability ���� ��	� If two objects have the same shape� then their
representations should be the same and should be invariant with respect to translation� rotation
and scaling� Uniqueness means that if two objects have di
erent shapes they should have di
erent
representations� Stability denotes the fact that if two objects have a small shape di
erence� then
their representations should have a small di
erence� Conversely� if two representations have a small
di
erence� then the objects they represent should also have a small shape di
erence� Therefore� a
stable representation means a representation that is insensitive to noise� In short� the object shape
and its representation should have a one�to�one correspondence property� Also� the representation
should re�ect the shape of the object at various levels of abstraction� The representation should
also combine both boundary and region information of the object� Finally� the representation
and the recognition of objects� which employ this representation should be computable e�ciently�
Other criteria for shape representation can be found in reference ���	� Skeleton representation as
introduced by Blum �
	 is a representation that meets most of the aforementioned requirements�
The skeleton of a two�dimensional object is a transformation which maps the contour of the object
into a one�dimensional line representation similar to that of a stick �gure�
Since the introduction of the skeleton representation� many skeletonization algorithms have been

reported in the literature �
�	� Many problems� however� remain unsolved� For example� methods
to quantitatively evaluating skeletons are still lacking� Recently� the work done by Suen and his
colleagues in skeleton evaluation is an exception ��
� ��� ��	�
Another problem with most skeletonization algorithms is their sensitivity to noise� Although

there are many skeletonization algorithms� little work has been directed towards studying the
sensitivity of these algorithms to boundary noise� Also� some existing skeletonization approaches
require many parameters to be supplied by the user ���	�
In this paper� a new skeletonization approach� which is developed based on the Electrostatic Field

Theory �EFT�� is proposed� The motivation of this research work stems from the following reasons�
First� the encouraging results of a recently developed corner detector based on the same underlying
theory� the EFT ��	� suggest the possibility of applying the EFT to determine skeletons� In reference
��	� it was pointed out that electrostatic �eld lines represent lines of symmetry naturally� Secondly�
EFT presents a natural solution for skeletonization which can overcome many of the di�culties�
e�g�� connectivity and noise sensitivity of existing approaches� Thirdly� EFT uni�es notions of
corner detection� thinning� skeletonization� and multiple scale� all within the same framework�
The paper is organized as follows� An overview of the related research is discussed in Section

II� The relevant background on the EFT is reviewed in Section III� The proposed approach for
skeletonization is presented in Section IV� In Section V� the experimental procedure that is used to
evaluate skeletons is described� The experimental results conducted to demonstrate the potential of
the EFT�based skeletonization algorithm are given in Section VI� Section VII draws a comparison
between the proposed approach and a recently published approach and highlights some of the merits
of the proposed approach� Finally� conclusions and future work are presented in Section VIII�

II� Related Work

This section gives to a brief review of skeletonization algorithms along with their main character�
istics and drawbacks� For a more complete survey of skeletonization algorithms in general� the
interested reader can consult reference �
�	�
Existing skeletonization approaches can be classi�ed approximately into a small number of cate�

gories� The �rst category is based on topological or direct thinning� Thinning denotes the process of
iteratively peeling away the object�s contour pixels while preserving its topology ���	� Many thinning
algorithms have been developed both as sequential ��	 and parallel ���	 algorithms� The drawbacks
of thinning algorithms are noise sensitivity� loss of continuity� and distortion which usually leads to
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counterintuitive results� Therefore� most thinning algorithms have been directed towards character
recognition applications� The reader may refer to reference ���	 for a comprehensive survey and
bibliography of thinning algorithms�
The second category is to compute the symmetric axes using direct� or analytical methods by

approximating the object�s boundary by a polygon� For noisy or biological �as cells� objects�
this approximation leads to unavoidable inaccuracy� Algorithms belonging to this category are
based on either heuristic methods ��� ��� ��	 or more rigorous methods such as Vonoroi diagram
��� ��	� Although this category has many advantages over thinning algorithms �since they make
measurements of Euclidean distance in the continuous domain rather than in the digital grid��
the algorithms in this category are of little practical use mainly because of their computational
complexity �for example� the Vonoroi diagram��
The third category of skeletonization algorithms is the ridge following algorithms� A Distance

Transform �DT� is applied to the object shape� from which ridges are found� The projection of these
ridges constitute the skeletal branches of the object� Ridges can be traced by the active contour
model ���	 and by other methods ��	� Also di
erent DT�s have been used in the literature� � See
���	 for a survey�� Algorithms in this category are relatively simple� In general� the skeletonization
results of this category are more accurate and are smoother than those of the other two categories
���	� A major drawback of algorithms in this category is that the DT of an object is� in general�
sensitive to noise� Equidistance contours are as noisy as the boundary� Representative examples of
this category can be found in references ��� ��	�
Although our proposed approach for skeletonization cannot �t rigidly into any of the aforemen�

tioned categories� it has some commonalities with algorithms in the ridge following category� where
the DT is replaced by an electrostatic potential surface transform and the ridge following process by
the tracing of �eld lines passing through signi�cant convexities and concavities detected along some
equipotential contour� The potential distribution of an object is obtained by solving the Poisson
equation inside the object� The Poisson equation has been used before to model and solve computer
vision problems such as the lightness problem� shape�from�shading� and the computation of optical
�ow ���	� The proposed potential surface approach can represent the object�s shape at di
erent
levels of smoothing or scale and can capture important shape information such as curvature� Fur�
thermore� equipotential contours are smoother than equidistance contours which are employed in
the ridge following category� Advantages of the proposed skeletonization approach are discussed in
Section VII�

III� Background on the Electrostatic Field Theory �EFT�

This section reviews the relevant concepts of the EFT�

General Properties of Electrostatics
The following are some of the properties of electrostatic potential and �eld�

�� The electrostatic potential� v�x� y�� at a point �x� y� in the ��dimensional space R� is governed
by the Poisson equation

r�v � �
�vf

�
�

where r� is the Laplacian operator� �vf is the free charge density at �x� y�� and � is the
permittivity of the medium�

�� The electrostatic �eld intensity vector �E�x� y� at �x� y� can be computed from the potential
v�x� y� using the following expression�

�E � �rv�

Page 




Two observations can be made� First� the �eld is in the direction of the steepest descent of
the potential� Second� the �eld lines are perpendicular to the equipotential contours and are
directed from the high to the low potential�


� A pure conductor is an equipotential surface and the electrostatic �eld vector �E is zero every�
where inside the conductor� The electrostatic �eld on the conductor surface� however� may be
nonzero and is given by

�Es �
�s

��
�n�

where �s is the surface charge density� �� is the permittivity� and �n is an outward unit vector
normal to the surface of the conductor�

�� The electrostatic �eld distribution on the conductor surface is proportional to the local curva�
ture of the conductor surface� which has been veri�ed both theoretically and experimentally
��	����	� This means that the electrostatic �eld conveys the same information as the curvature
of an object boundary� Electrostatic �eld extrema along an equipotential contour correspond
to curvature extrema �signi�cant convexities and concavities�� This property is the main mo�
tivation behind using the EFT to extract the skeleton of an object and has been exploited in
��	 to detect corners�

�� The �eld lines are normal to a conductor boundary� At a corner� the �eld lines are directed
along the bisector of the angle of the corner� This property is very important and suggests
that the electrostatic �eld lines can represent lines of symmetry and hence the skeleton�

IV� Electrostatic Field�Based Approach to Skeletonization

The input to the proposed skeletonization approach� which is similar to most skeletonization ap�
proaches� is the binary image of an object� In the proposed approach� a skeleton is de�ned as
the electrostatic �eld lines passing through points of signi�cant convexities and concavities� The
following are the steps required to �nd the skeleton of a planar object�

�� Compute the potential distribution v�x� y� inside the object�

�� Find the equipotential contour at a given potential vcon�


� Detect signi�cant convexities and concavities along an equipotential contour� and

�� Trace skeletal points starting from points of signi�cant convexities and concavities�

The following subsections give details of each of the above steps�

A� Solution of the Potential Distribution Inside the Object

To �nd the potential distribution inside the object is the most important step in the proposed
skeletonization algorithm� It resembles� in some sense� the distance transform step in the ridge
following approach ���	� Assume that the planar object has no holes� The space between the
object and the image border �non�object area� is modeled as a conductor of electrostatic potential
vb and the interior region as a cavity in the conductor having a dielectric of permittivity � �see
Figure ��� If the cavity is free of charge� the electrostatic �eld will be zero everywhere inside
the cavity and the potential inside the cavity will be vb� In the proposed approach� the cavity
is charged with a negative charge density �vf so that the electrostatic �eld can exist inside the
cavity� The problem of �nding the potential distribution inside the cavity is a boundary value
problem� commonly known as the interior Dirichlet problem for solving the Poisson equation �
�	�
�The exterior Dirichlet boundary value problem for the Laplace equation was employed in ��	 for
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the detection of corners�� It can be easily veri�ed that the solution is unique� Many methods for
the solution of the interior Dirichlet boundary value problem have been reported in the literature�
Both iterative ���	 and direct analytical ���	 solutions have been used to solve vision problems such
as the lightness problem� the shape�from�shading problem� and the computation of optical �ow� In
this paper� the Jacobi relaxation method �
�	 is adopted because of its simplicity�
In a digital grid� the Laplacian operator is approximated by the �nite di
erence method as

follows�

r�v �
��v

�x�
�

��v

�y�
�

�

��
�vi���j � vi�j�� � vi���j � vi�j�� � �vi�j��

where � is the spacing between picture cell centers� Let � � � for convenience� The potential at
point �i� j� at iteration k� vki�j � is given by�

vki�j �
�

�
�vk��i���j � vk��i���j � vk��i�j�� � vk��i�j�� �

�vf

�
��

where all the values used in these calculations are �oating point numbers� Notice that the potential
for a point at the ith iteration is merely dependent on the potential of its vertical and horizontal
neighbors at the �i� ��th iteration�
The iteration terminates when the potential distribution stops changing after N iterations� i�e��

when the following condition is satis�ed
X
i�j

jvNi�j � vN��i�j j � ��

Recall that �vf is constant everywhere inside the cavity �object region�� It is noteworthy that the
value of this constant �vf does not a
ect the potential distribution generated except for a scale
factor� This has been veri�ed experimentally and can be easily seen because the Poisson equation
is linear� Hence� after the �nal potential distribution is computed� the potential distribution is
normalized as follows� The maximum potential vb of the object boundary is set equal to ��� and
the minimum potential is set equal to � and the potential values inside the object is computed using
a simple linear transformation� The potential distribution of an object is a characteristic surface
of the object and does not depend on any parameters�
The computed surface S � vi�j represents the potential surface of the object that will be utilized

for the construction of the skeleton� Figure � demonstrates the potential surface generated for the
image of a Maple leaf� The potential surface possesses a number of interesting and useful properties
which are outlined in Section VII�A in comparison with the Euclidean distance transform�

B� Construction of an Equipotential Contour at a Given Potential

The equipotential contour is used to detect signi�cant convexities and concavities along the contour
from which skeletal branches are initiated� This step can be visualized as a potential surface
S � v�x� y� being cut by a constant potential plane �parallel to the x�y plane�� The curve that
results from the intersection of the potential surface and the cutting plane is a closed contour� In
the implementation� it is expressed as a Freeman chain code� Since the spatial domain is a digital
grid and the potential distribution takes on �oating point values� the construction of a connected
equipotential contour at a given potential� vcon within the range � � ���� can be computed as
follows�
First� all pixels having a potential less than or equal to vcon are marked� The marked region is

guaranteed to be a single connected region� Second� the boundary of the marked region is traced in a
clockwise direction and these boundary pixels are labeled in a Freeman chain code� As the boundary
is traversed� the location� at subpixel resolution� of the point at which the potential is exactly equal
to vcon is found by using the bilinear interpolation �see ��	 for details�� By connecting the locations
�at subpixel resolution� having a potential exactly equal to vcon� the required equipotential contour
is constructed� The corresponding �eld values at each of this chain of points are also computed
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simultaneously for later processing� In this way� the one�dimensional relation between the �eld E
along the contour and the corresponding arc length s� measured with reference to some arbitrary
�xed point on the contour� is found� The arc length is normalized with respect to the total contour
length such that s takes on values in the range �� � �	� Thus the result of this step is a one�
dimensional curve E�s� at the given potential vcon� It is worth noting that the lower is the value of
contour potential vcon� the smoother the contour� the smoother the curve E�s�� the less the number
of extrema of the �eld� and the less the number of signi�cant convexities and concavities as expected
due to the smoothing e
ect of the solution of the potential distribution inside the object� Figure

 illustrates this e
ect by depicting the �eld distribution along di
erent equipotential contours for
the image of a Maple leaf with the boundary corrupted with Gaussian noise of � � 
�
From the above discussion� it is evident that the proposed skeletonization approach has the ad�

vantage of a multiscale approach� By appropriately choosing the equipotential contour at potential
vcon� the desired level of details �or scale� of the skeleton can be selected� In particular� choos�
ing an equipotential with a low value of vcon� a coarse skeleton is generated� whereas choosing an
equipotential with a high value of vcon� a �ne skeleton is generated� This multiscale feature of the
proposed approach is attributed to the natural smoothing characteristic of the Poisson equation�
Such a smoothing e
ect has been used previously in reconstructing the three�dimensional default
shape of an object from its occluding contour �

	� Figure � shows this interesting property of
the potential distribution by depicting some equipotential contours of the Maple leaf at various
potentials�

C� Detecting Corners along the Equipotential Contour

Starting from the �eld distribution E�s� along the contour s� convex �concave� corners are allo�
cated by identifying points having local minima �maxima� of the �eld E�s�� Locations of minima
�maxima� of the �eld are identi�ed as convex �concave� corners ��	� As mentioned in the previous
step� the choice of the contour potential vcon directly determines the degree of detail of the skeleton�
Figure � demonstrates this fact by depicting di
erent equipotential contours and their associated
detected corners� The lower is the potential� the lower the number of corners detected� It should
be noted that the interaction corner models discussed in reference ���	� namely� the �� the End� and
the Stair models� are also apparent in the EFT�based approach ��	 and can be observed in Figure
�� For example� corners merging� disappearing� attracting� and repelling can be seen in the �gure�
In this paper� both convex and concave corners are employed in generating skeleton branches�

Many skeletonization algorithms consider only convex corners �e�g� ��	�� Considering only convex�
ities may be justi�ed in certain applications as in the identi�cation of pseudopods ��	� but� both
convexities and concavities must be considered because both contribute equally to the shape of an
object� For a unique skeleton representation �see Section II�� both convexities and concavities must
be considered �see Figure ���

D� Skeleton Tracing

Having identi�ed points of signi�cant convexities and concavities along an equipotential contour
at a potential vcon� these points are used to initiate the skeleton tracing procedure� The skeleton
branches correspond to �eld lines passing through signi�cant corners identi�ed in the previous step�
So the skeleton generation procedure is reduced to the problem of tracing the �eld lines� Starting
from the points having signi�cant convexities and concavities along an equipotential contour of
potential vcon� the �eld lines are traced in two directions� �� in the inward direction towards the
object�s central region or pixel� in the potential range vcon � �� and �� in the outward direction
towards the object�s boundary� in the potential range vcon � vb� When tracing inward� the process
is simulated by initially putting a positive charge in the identi�ed location of the convexity �or
concavity� pixel� The positive charge� under the in�uence of the electrostatic �eld� favors to move
in the direction that minimizes its energy� Such a direction is also the direction of the electrostatic
�eld� In the implementation� the charge is allowed to move in an n � n neighborhood in each
iteration� where n is an odd integer and it determines the angular resolution of the �eld lines�
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The larger is n� the �ner the angular resolution� Using too small a window �e�g� 
 � 
�� leads to
jaggy skeletal branches due to inaccurate tracing of �eld lines in the digital grid� On the other
hand� using too large a window �e�g� �� � ��� also results in poor tracing of the �eld lines since
a skeletal branch will be broken into line segments of length dn� e� A � � � window seems to be
a good choice �see Figure ��� In each iteration� bn�c pixels in the n � n window are marked�
Pixels that are traced by the charge while it is moving are marked as skeletal pixels� This tracing
process terminates when the charge hits the object�s central pixel or region at zero potential� thus
reaching its global minimum energy� It is noteworthy that the skeletal branches generated by
this procedure is guaranteed to meet at the center or at the minimum potential region since the
potential distribution decreases monotonically in the inward direction up to the central point of
zero potential� Also the connectivity requirement of the skeleton is guaranteed using this approach
because �eld lines must be continuous�
In principle� the same process could be used in the outward direction towards the object�s bound�

ary by replacing the positive charge with a negative charge� Also pixels traced by the charge move�
ments could be marked as skeletal pixels� The process could then terminate when the charge hits
the object�s boundary at a potential vb �or ����� thus reaching its global minimum energy� Looking
at Figure �� however� it can be observed that the outward tracing part of the �eld lines is not
accurate enough to make the charge hit the corner at the desired boundary location� This deviation
of �eld lines occurs only for sharp convex corners since the region of support for estimating the �eld
direction �the gradient direction� is not large enough to compute the �eld direction correctly as the
charge approaches the boundary and hence� the charge tends to deviate and take the shortest path
to the boundary� The problem is not inherent in the EFT but is a result of quantization� In the
implementation� the following mechanism is employed to alleviate this problem� Instead of tracing
the �eld lines in the outward direction by the moving charge� the �eld extrema of adjacent contours
are matched� This leads to more accurate tracing of the �eld lines in the outward direction as can
be seen by comparing Figure ��c� and �d��

V� Experimental Procedure for Evaluating Skeletons

Despite the large number of skeletonization algorithms developed so far� the literature lacks algo�
rithms for evaluating skeletons quantitatively� Suen and his colleagues� however� made some e
ort
in this direction ��
� ��� ��	� In reference ��
	� Lam and Suen use three di
erent but somehow cor�
related measures of distance between the constructed skeleton and a reference �ideal� skeleton that
has been prepared manually� In this paper� a similar distance measure is adopted� For each skeletal
pixel� the distance between the skeletal pixel and its ideal position given by the ideal skeleton is
computed� Because the goal of the evaluation procedure is to study the behavior of the proposed
skeletonization approach in the presence of noise� shapes with known ideal skeletons are used� e�g�
a square� The distance value takes on either positive or negative value depending on which side
the skeleton point lies with respect to the ideal skeleton�s branch� This distance measure is similar
to the projection distance employed in ��
	� The variance of the distance array xi� � � i � N � is
computed as follows�

V �X� � E�X��� E��X��

where

E�X� �
�

N

NX
i��

xi�

and

E�X�� �
�

N

NX
i��

x�i �

E�X� denotes the expected or the average projection distance� E�X�� denotes the mean squared
projection distance� and N is the number of skeletal pixels� The standard deviation� SD� is then
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calculated from the variance

SD�X� �
q
V �X��

The standard deviation is thus used as the �gure�of�merit of the skeleton evaluated� The smaller
is the value of the SD� the closer the skeleton to the reference skeleton�

VI� Experimental Results

Both synthesized and real objects were used in the experiments� For the synthesized objects� an
image of a �
� �
 pixels square centered on a ���� ��� image is used� The ideal skeleton of this
square is the two intersecting diagonal lines� To test the sensitivity of the proposed EFT�based
skeletonization approach with respect to boundary noise� the boundary of the square is perturbed
by varying degrees of zero�mean Gaussian noise� The standard deviation � of the noise is varied in
the range from � to � in steps of ��� units� The square�s boundary is kept at a potential of vb � ����
The skeletons are generated starting at equipotentials in the range ���� ��� in steps of �� Figure
� depicts a three�dimensional graph showing the variation of the SD at varying levels of boundary
noise and starting potentials�
Some observations and remarks can be drawn from the �gure� First� it can be noticed that the SD

increases with the boundary noise� a �nding which agrees with one�s intuition� Secondly� except for
a few erratic spikes in the �gure� the SD is kept at a reasonably low level even at a noise level of ��
This result is quite encouraging since it illustrates the insensitivity of the proposed skeletonization
algorithm to boundary noise� The erratic spikes appearing in the �gure are attributed to the false
corners detected due to the severe boundary noise� These false corners generate extra branches
that contribute signi�cantly to increasing the value of the SD� This problem is under investigation
by the authors and is beyond the scope of this paper�
The skeletons generated starting at a potential of ��� at di
erent noise levels are depicted in

Figure �� Despite the severe boundary noise� the skeletons generated at noise levels � and � are
very close from the ideal one�
To see the performance of the proposed skeletonization algorithm when applied to real images�

the algorithm is experimented with an image of a Maple leaf� Figures ���a� and �b� illustrate
the skeletons generated for the Maple leaf starting at potentials of ��� and ���� respectively�
The comparison of the skeletons generated at di
erent starting potentials demonstrates clearly
the multiscale capability of the proposed skeletonization algorithm� The skeleton generated at a
potential of ��� �Figure �� �b�� is coarser in scale and hence� has a smaller number of branches
when compared to that generated at a potential of ��� �Figure �� �a���

VII� Discussion

In this section� a comparison between the potential surface and the Euclidean distance transform
is presented� Potential Distribution versus Distance Transform
The following lists some of the similarities of the potential surface generated by the EFT and the
Euclidean distance transform�

� Both transforms are based on the solution of a partial di
erential equation� The Euclidean
distance transform is generated based on solving the Eikonal equation �rD�� � ��D

�x
�� �

��D�
�y

�� � � inside the planar object� where D�x� y� is the distance from a point inside the

object� �x� y�� to the boundary� while the potential surface is generated based on the solution
of the Poisson equation inside the object�

� Both surfaces are monotonically decreasing with respect to the center of the object� and hence�
there is only one equipotential contour for a given potential and one equidistance contour for
a given distance� �Note that this is true only for objects containing no holes��
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� Both transforms capture the geometric symmetries of planar objects and this is the reason
behind their usage in extracting skeletons�

� Both transforms are fundamental to their corresponding skeletonization approaches�

However� the two transforms can be contrasted in the following points�

� Each transform is based on a di
erent equation as mentioned before� The Eikonal equation
attempts to �nd a distance distribution� D�x� y�� such that the magnitude of the gradient is
uniform everywhere inside the object while the Poisson equation �with uniform �� tries to �nd
a potential distribution such that the Laplacian of the potential is uniform�

� The solution of the Poisson equation under the given boundary conditions �the interior Dirichlet
boundary problem� is unique �
�	� In the case of the Eikonal equation� however� both D�x� y�
and �D�x� y� are possible solutions�

� The proposed potential surface re�ects the shape of the object more naturally than the Eu�
clidean distance transform� The potential surface represents what might be called �the evolu�
tion� or �the history� of the object� The center of the object �pixel or contour of zero potential�
represents the starting phase of the object as a nucleus and the equipotential contours of in�
creasing potential represents the evolution history of the object until all the details develop in
the �nal phase of the object �see Figure ���

� The Poisson equation is a linear second�order partial di
erential equation� whereas the Eikonal
equation is a non�linear �rst�order partial di
erential equation� This distinction gives rise to
some interesting properties� First� the potential surface which satis�es the Poisson equation
is smoother than that which satis�es the Eikonal equation� The equipotential contour gets
smoother as it is closer to the center of the object as opposed to the equidistance contour
which is parallel to the boundary ���	 �see Figure ���� The potential surface leads to more
stable skeletons than those based on the distance transform� Second� in the surface satisfying
the Poisson equation� no ridge points are considered separately as in the case with the surface
satisfying the Eikonal equation� The two groups are dealt with separately��

� The gradient of the potential surface� i�e� the electrostatic �eld� along an equipotential contour
re�ects the curvature information of the object�s boundary at varying degrees of smoothing�
This curvature information is used readily to detect signi�cant convexities and concavities
�corners� at di
erent levels of detail and hence� the robustness of the approach in the presence
of noise is improved� Field extrema along an equipotential contour correspond to curvature
extrema and hence to corners as mentioned in Section III and reported in ��	 �see Section
III�C�� The construction of the potential surface enables the detection of corners at multiple
scales ��	����	� On the contrary� the distance transform does not provide this opportunity� and
hence� skeletonization algorithms based on the distance transform must employ a separate
technique �e�g� curvature morphology ���	� to detect corners�

VIII� Conclusions and Future Work

In this paper� a novel approach for skeletonization that relies on the EFT has been presented� The
background on the EFT that is relevant to the approach has been reviewed� Then� the details of the
steps that constitute the proposed skeletonization approach have been presented� The approach has
been shown to possess a number of desirable features that can naturally solve many problems that
have been encountered with existing skeletonization approaches� First� connectivity and thinness
are guaranteed in the proposed approach� Secondly� the EFT approach gracefully captures and uni�
�es notions of corner detection� multiscale� thinning� and skeletonization� Thirdly� the insensitivity
of the proposed approach to severe boundary noise has been demonstrated experimentally� More�
over� since the new skeletonization approach is developed based on a well�established theory� the
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electrostatic �eld theory� the performance of the proposed approach under varying conditions can
be predicted and justi�ed before experiments are even conducted� Experiments on a synthesized
square were performed to illustrate the potential of the proposed approach and its insensitivity to
boundary noise� Also the approach was also experimented with a Maple leaf image and results
generated by the algorithm are very encouraging�
Our research work using the EFT framework for solving computer vision problems inspires further

research using the same approach in addressing other vision problems� Many directions of research
based on the EFT can be done� An elegant way to eliminate skeleton branches that pertain to
noise can be investigated� Also� a quantitative method by which skeletons generated by the EFT�
based skeletonization approach can be evaluated and hence� the re�nement of the skeleton can be
developed�
The potential distribution in its own constitutes a useful representation of objects at various

levels of details similar to the multiscale curvature�based shape representation approach ���	� ���	�
In the proposed approach� scale is naturally de�ned by the potential distribution� In fact� the
equipotential contours generated from the potential surface can be viewed as �ngerprints of the
object ���	 for robust representation and recognition� the application of which is an interesting
research topic�
The problem of skeletonization of objects containing holes are also of major concern and is

currently studied by the authors� The de�nition of the skeleton using the EFT may have to be
modi�ed as follows� The skeleton is the union of the zero equipotential �connected� contour�s� �one
surrounding each hole� and electrostatic �eld lines �skeletal branches� originating from signi�cant
convexities and concavities along the boundary curve� Finding the zero equipotential contour�s��
however� is not an easy task in a digital grid when objects contain narrow regions or bottle necks
since the space would not be large enough for the potential distribution to fall down to zero because
of quantization� A possible solution to this problem is to use the multigrid approach �
�	 to re�ne
the potential values at the bottle necks and eventually �nd the zero potential contour�s��
A natural extension to the EFT�based approach is to use it in representing three�dimensional

objects because the Poisson equation is general and is not restricted to two dimensions� The
potential surface becomes the potential volume and the equipotential contours in are replaced
by equipotential surfaces� Also� the electrostatic �eld extrema would correspond to curvature
extrema� and hence� three�dimensional edges and three�dimensional corners can be detected using
the same methodology described in this paper� Once the potential volume is estimated� the three�
dimensional skeleton of a three�dimensional object ��	� ��
	� which has a special importance in
biomedical applications� can be extracted �
Another extension to the approach is to extend it to solve the dynamic scene analysis problem�

In this case� the more general wave equation can be used instead of the Poisson equation to model
and accommodate for the time variation of the potential distribution�
The most critical step in the proposed approach in terms of the running time performance is

the generation of the potential distribution� Non�iterative direct analytical methods for solving the
Poisson equation ���	 deserve further investigation�
The experience in this work suggests that interesting features exhibited by the electrostatic

�eld�based approach of corner detection and skeletonization promote the investigation of more
physics�based models in solving computer vision problems� Finally� it is believed that borrowing
simple ideas from other disciplines� such as physics� will certainly bene�t research in the computer
vision community�
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Figure �� The model of the problem to generate the potential distribution inside the object �the
interior Dirichlet boundary problem��

Figure �� The potential surface generated for the image of a Maple leaf�
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�a� �b�

�c� �d�

Figure 
� The smoothing e
ect on �eld magnitude at equipotential contours� �a� The potential
surface generated for a Maple leaf with boundary corrupted by Gaussian noise of � � 
� �b���d� Field
distribution along equipotential contours of potentials � �
�� ���� and ��� respectively� Notice that�
the lower the potential� the less the number of �eld extrema �corresponding to signi�cant convexities
and concavities�� This illustrates the multiple scale capability of the proposed approach�
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Figure �� Smoothing e
ect and multiscale property of equipotential contours� Equipotential con�
tours are constructed for the Maple leaf in Figure �� The bright contour is the square�s boundary�
The gray contours are the equipotential contours� The equipotential contours shown are constructed
in the potential range ������ in steps of ��� When the contour is closer to the center of the object�
the contour gets smoother and details tend to disappear�

Figure �� The equipotential contours and their associated corners �bright dots� of the Maple leaf�
The contours are constructed for the potential range ������ steps of ��� Notice that the number
of corners increase with the potential vcon�
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Skeleton

Figure �� The same skeleton for di
erent shapes� Considering only convexities and disregarding
concavities leads to non�unique skeleton representation�
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�a� �b�

�c� �d�

Figure �� The e
ect of window size and a re�nement of the algorithm in skeleton tracing� produce
more accurate �eld lines� �a� Too small a window �
�
� produces too jaggy skeleton� �b� Too large
a window ���� ��� leads to inaccurate tracing of �eld lines� �c� � � � window results in a better
approximation of �eld lines� �d� Tracing �eld extrema along equipotential contours in the outward
direction part produces skeletal branches originated from the boundary corners� Three items are
shown in the images� ��� the object outline is the exterior contour� ��� the equipotential contour is
the interior contour� and �
� the skeleton generated lies inside the object�
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Figure �� Performance of the proposed skeletonization algorithm with respect to noise� The skeleton
SD is used as a �gure�of�merit� The experiment is performed on a synthesized square corrupted
with a zero�mean Gaussian noise� The performance is measured for a range of starting potentials
��������� and for a range of boundary noise ������ Except for a few erratic points� the skeleton SD
is reasonably low�

�a� �b� �c�

Figure �� Skeletons generated for a square corrupted with 
 di
erent noise levels �� �� and �� All
the three skeletons are started at the equipotential contour of ���� The di
erence between the ideal
�noise�free� skeleton and the generated skeletons is very small�
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�a� �b�

Figure ��� The multiscale capability of the proposed approach� Figure illustrates skeletons gener�
ated for a Maple leaf at two di
erent starting equipotentials� �a� ���� �b� ���� The skeleton in �a�
has more branches than that of �b�� The skeleton in �a� has �� branches� whereas that in �b� only
has �� branches� The skeleton in �a� represents the leaf at a �ne detail� while that in �b� represents
the leaf at a coarse detail�
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�a� �b�

�c� �d�

Figure ��� Comparison between the potential distribution �Poisson�s equation� and the distance
transform �the Eikonal equation�� �a� The potential distribution v�x� y� for a rectangle� �b� The
distance transform D�x� y� for the same object� �c� Equipotential contours of the rectangle con�
structed at the potential range ������� in steps of 
� potential unit� �d� Equidistance contours
constructed at the distance range �����
� in steps of 
 pixels� Comparing �a� � �b�� it is evident
that the potential distribution is much smoother than the distance transform� Moreover� comparing
�c� � �d� the equipotential contours represent the object at di
erent levels of details which gives
rise to the multiscale property of the proposed skeletonization approach�

Page ��


