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Abstract—Wideband analysis of dielectric objects illuminated
by uniform plane waves is performed using an eigenmode
projection technique. The frequency independent feature of the
generated matrices of the eigenmode projection method will be
exploited to solve electromagnetic scattering problems over a
wide range of frequencies efficiently without the need of filling
and inverting all the system of matrices and the encountered
numerical integrations are only evaluated once, with their values
used at all frequencies. Results are presented to validate the
method and illustrating the speed up of the technique making
use of the frequency independent feature of the proposed method.

I. INTRODUCTION

Wideband analysis in electromagnetics is of great impor-
tance for a wide range of applications and has thus been in-
vestigated using different time and frequency domain methods.
In frequency domain methods such as the moment method
(MoM), the solution procedure requires filling and inverting
the matrix at each frequency point, which is a prohibitively
time and memory consuming process.

An eigenmode projection technique was proposed to solve
problems of microwave cavities [1] and free-space scattering
from dielectric objects [2]. In this work, the frequency inde-
pendent feature of the generated matrices of the eigenmode
projection method will be exploited to solve electromagnetic
scattering problems over a wide range of frequencies ef-
ficiently. A general overview of the eigenmode projection
method is given in the next section, followed by the procedure
employed to produce the wideband solution without the need
of filling and inverting all the system of matrices and the en-
countered numerical integrations are only evaluated once, with
their values used at all frequencies. Results are presented to
validate the method, illustrating the speed up of the technique
because of the frequency independent feature of the proposed
method.

II. OVERVIEW OF THE EIGENMODE PROJECTION
TECHNIQUE

An arbitrary dielectric object is excited by uniform plane
wave as shown in Fig. 1. A fictitious canonical cavity with
perfect magnetic (PM) or perfect electric (PE) boundary is
chosen to provide the set of eigenmodes that is used in solving
the problem. The cavity is chosen to be either cylindrical
or spherical according to the problem under consideration

either being two dimensional (2D) or three dimensional (3D),
respectively.
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Fig. 1. General scattering problem by an arbitrary dielectric object with
permittivity function εd(r), the object is enclosed by a canonical fictitious
cavity with radius a , volume V and outer surface S.

The total port field is the summation of the incident field
and the scattered port modes as:

Eport(r) = Einc(r) +Escat(r) (1)

Hport(r) = − 1

jωµ0
∇×Eport(r) (2)

where Escat(r) =
∑
p a

scat
p Dp(r), with Dp(r) being the

functional dependence of the scattered fields from cylindrical
or spherical objects in case of 2D or 3D problems, respectively
[3]. Further illustration is available in the Appendix.

Cavity eigenmodes are a set of orthogonal solenoidal (En,
Hn), divergence free, and irrotational (Fα, Gλ), curl free,
modes. The solenoidal modes are related together by ∇ ×
En = knHn and ∇ ×Hn = knEn, however the irrotational
modes are represented by the divergence of scalar potentials
lαFα = ∇φα and lλGλ = ∇ψλ, where kn, lα, lλ are
wave numbers for solenoidal, irrotational electric and magnetic
fields respectively [4], [5]. Thus the cavity fields could be
expressed as follows:



Ecav(r) =
∑
n

anEn(r) +
∑
α

fαFα(r) (3)

Hcav(r) =
∑
n

bnHn(r) +
∑
λ

gλGλ(r) (4)

The canonical cavity is chosen with PM boundary to
eliminate the irrotational magnetic field [1]. Applying fields
expansions to Maxwell’s equations and performing modes
projection leads after some lengthy algebraic manipulations
to the following equations

knan = −jωµ0bn (5)

knbn +

˛
S

(
Hport(a)×En(a)

)
· ds =

jω

[∑
m

〈En, En′〉 an +
∑
α′

〈En, Fα〉 fα

]
(6)

˛
S

(
ε0E

port(a)φα(a)
)
· ds−

lα

[∑
m

〈Fα, En〉 an +
∑
α′

〈Fα, Fα′〉 fα

]
= 0 (7)

where, 〈X, Y〉 =
´
V
ε(r)X(r) ·Y(r)dv.

Combining the equations (5-7) yields a matrix equation of
the form:

[
[EEnn′ ]− [EFnα] [FFαα′ ]

−1
[EFnα]

T
]
[an]−

k2n
ω2µ0

[an] +

1

lα
[EFnα] [FFαα′ ]

−1
˛
S

(
ε0E

port(a)φα(a)
)
· ds−

˛
S

(
Hport(a)×En(a)

)
· ds = 0 (8)

where [EEnn′ ], [EFnα] and [FFαα′ ] are matrices with their
elements are the cavity eigenmode projections 〈En, En′〉,
〈En, Fα〉 and 〈Fα, Fα′〉 respectively and n, n′, α and α′ =
1, 2, · · ·N with N being the number of cavity modes under
consideration.

It should be noted that the cavity eigenmodes are frequency
independent and the frequency dependence in the equations
appears only in the frequency ω and the port fields Eport and
Hport which include implicitly the scattered field coefficients
ascatp , thus there exists two unknowns in (8) which are [an]
and

[
ascatp

]
In order to evaluate the fields coefficients another equation

is obtained by enforcing the boundary conditions by equating
the tangential electric fields components for port and cavity
modes at cavity boundary, this is done in average sense by
performing surface projecting over Dp′ to avoid discontinuity
at the surface as follows:

˛
S

n̂×Eport(a).Dp′(a)ds =˛
S

n̂× (
∑
n

anEn(a) +
∑
α

fαFα(a)).Dp′(a)ds (9)

Equations (1-2), (8) and (9) can be manipulated and cast in
the matrix form:

[A+B(ω)] [an] = C(ω),

A = [EEnn′ ]− [EFnα] [FFαα′ ]
−1

[EFnα]
T (10)

It is obvious that all the elements of A are integrations of
the cavity mode projections and is thus frequency independent,
whereas the elements of B(ω) and C(ω) contain integrations
over the fictitious port and is thus frequency dependent due to
the argument (ka) of the used Hankel functions in Dp with k
is the propagation constant and a is the fictitious cavity radius.

III. WIDEBAND ANALYSIS

The solution of (10) requires the evaluation of the inverse
[A+B(ω)]

−1, which is evaluated in light of the theorem in
[6] as follows:

let C1 = A−1

, Ci = Ci−1 − gi−1Ci−1Bi−1Ci−1 (11)

, Bi is generated by setting all rows in B to zero except the
ith row, and gi = 1/ (1 + trace(CiBi)), with i = 2, . . . , N
and N is the matrix dimension which is the number of
eigenmodes under consideration, then the required inverse may
be obtained using:

[A+B(ω)]
−1

= CN − gNCNBNCN (12)

In the previous inversion scheme it should be mentioned that
the evaluation of A−1 is done only once at some reference
frequency and is stored, for each frequency applying the
previous procedure the inverse [A+B(ω)]

−1 is obtained
with no further inversion needed. The inversion scheme is
performed in forward not recursive manner avoiding memory
overloading resulting from recursion.

By this the time consuming process of matrix inversion is
performed only once unlike other frequency domain methods.

The second interesting thing about the proposed technique
is the time saving in the matrix filling process for wideband
analysis. By inspecting the matrices in (10) it is found that
the matrix A as mentioned before is frequency independent
and thus it is evaluated only once, while matrices B(ω) and
C(ω) are partially evaluated at the different frequency points
for only the terms with the surface integral of the port modes
which end up in a closed analytical form where some sorts of
orthogonality are used converting the surface integrals to direct
substitution in the fields expression while the terms with the
volume integrals of the eigenmodes is frequency independent
and evaluated only once, as a result the filling process is done



in a fast manner without the need of filling all the system of
matrices at each frequency step for wideband analysis.

IV. RESULTS AND VERIFICATION

Bistatic scattering width (SW), normalized to free space
wavelength (λ), [3] of 2D dielectric objects illuminated by
transverse magnetic (TMz) plane wave is used to verify
the proposed technique. The number of eigenmodes required
for the solutions was found to be an increasing function of
frequency and is taken by the rule of thumb N = ceil(8kda)
with kd is the propagation constant in the dielectric material
at the working frequency, this rule of thumb showed good
agreement with different geometries.

In the proposed approach making use of the frequency
independent feature of the generated matrices and filling it
only once the number of modes is taken according to the
maximum frequency as in Fig. 2 where the results obtained for
cylindrical scatterer are compared with the analytical solution
in [3] with the number of eigenmodes are set to ceil(8kd,maxa)
.
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Fig. 2. SW for cylindrical dielectric scatterer with εd = 3ε0 and radius
= 0.1 m illuminated by TMz plane wave with canonical cavity touching the
dielectric surface compared with the analytical solution.

However solving in direct manner less number of modes
are taken for small frequencies but with all the system of
matrices calculated at each frequency step. Evaluating the
effectiveness of the proposed accelerated approach a speed up
factor is introduced to study its advantage over direct solution
as follows:

Speed up factor =
Time for direct approach

Time for accelerated approach
(13)

Figure 3 shows the speed up factor for the cylindrical
scatterer studied in Fig. 2. The number of modes utilized in the
direct approach is ceil(8kda) for each frequency points with all
the matrices calculated, while the accelerated technique utilize
ceil(8kd,maxa) for all frequency points with the frequency
independent matrices calculated only once.
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Fig. 3. Speed up factor for cylindrical dielectric scatterer with εd = 3ε0
and radius = 0.1 m illuminated by TMz plane wave with canonical cavity
touching the dielectric surface at different maximum-to-minimum frequency
ratios, fmin = 1 GHz.

In Fig. 3 it is worth mentioning that the effectiveness of the
proposed accelerated approach, represented by the speed up
factor, increases as the number of frequency points increases
due to the reduction in the matrices filling time in this
approach, even with the direct approach using less number
of modes for lower frequencies, however this fact results in
decreasing the speed up factor for wider band solutions.

Figure 4 produces another verification result illustrating that
the proposed technique is valid for any dielectric geometry
compared with the results obtained using the method of
moments (MOM).
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Fig. 4. SW for rectangular dielectric scatterer with εd = 4ε0 and dimensions
0.2 × 0.3m2 illuminated by TMz plane wave incident perpendicular to
its short side with canonical cavity passing through the rectangle corners
compared with the results obtained using MOM.

Figure 5 shows the result for a coated dielectric cylinder
compared with the analytical solution in [3] with the number
of eigenmodes is set to ceil(8kd,maxa), where kd,max =



ωmax

C

√
εaverage and εaverage is given by:

εaverage =

´
Sd
εd(r)dS

Sd
, (14)

where Sd is the dielectric object surface area.
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Fig. 5. SW for cylindrical coated dielectric scatterer with εd1 = 3ε0,
εd2 = 2ε0, inner radius of 0.1 m and outer radius of 0.2 m illuminated by
TMz plane wave with canonical cavity touching the outer dielectric surface
compared with the analytical solution.

V. CONCLUSION

Adopting eigenmode projection technique in electromag-
netic scattering problems provides a frequency domain method
with a very unique property of the independent feature of
the generated matrices. This is useful in wideband analysis
which is of great importance for a wide range of applications,
where the frequency independent feature is used in solving
electromagnetic scattering problems over a wide range of
frequencies efficiently without the need of filling and inverting
all the system of matrices except at some reference frequency
within the band of interest. Results are presented to validate the
method and illustrating the speed up of the proposed technique
making use of its properties.

APPENDIX

In the proposed technique the scattered fields are expanded
in terms of cylindrical or spherical functions in case of 2D
or 3D problems, respectively following the same procedure
described in [3].

For 2D problems the scattered fields are represented by
the summation of Hankel functions of the second kind and
azimuthal variations. This could be expressed as follows for
scattering of TMz plane waves:

Escat(r) =

∞∑
p=−∞

ascatp Dp(r), (15)

where Dp(r) = H
(2)
p (kρ)ejpφ

However for scattering of TEz plane waves it is most
convenient to expand the scattered magnetic field rather than
the electric field.

Also it is very useful to make use of the cylindrical wave
transformations to represent the incident plane wave as in
(16), this simplifies the surface integrals making use of the
orthogonality between fields.

E0e
−jkx = E0e

−jkρcos(φ) = E0

∞∑
p=−∞

jpJp(kρ)e
jpφ (16)

For 3D problems the expansion is done for the magnetic and
electric vector potentials A(r) and F(r), respectively and they
are represented by the summation of spherical Hankel func-
tions of the second kind for radial variations, the exponential
functions for φ variations, and the Legendre polynomials and
associated Legendre functions for θ variations, also the plane
waves could be expressed in terms of spherical wave functions.
Details for the 3D scattering expansions could be find in [3].
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