
RESEARCH Open Access

Embedded reconfigurable synchronization &
acquisition ASIP for a multi-standard OFDM
receiver
Mahmoud A Said*, Omar A Nasr and Ahmed F Shalash

Abstract

Embedded reconfigurable architectures are currently attracting increasing attention in the wireless communications
industry due to the escalating number of wireless standards in today’s market. Application specific instruction-set
processors (ASIPs) present a reconfigurable solution that offers a compromise between programmability and low
power consumption. In this article, the design and implementation of an embedded synchronization and
acquisition ASIP for OFDM based systems is proposed. The engine architecture is presented and the programming
model is explained in details. The proposed engine is scalable and it can be configured to support a multitude of
synchronization algorithms and OFDM standards. While applicable to many OFDM systems, the proposed
architecture was successfully verified on long term evolution (LTE Rel. 8) and WiMAX 802.16e systems. A partial list
of synchronization and acquisition algorithms are tested on the engine for the two standards, and the results
highlight the capabilities of the engine. The processor has been synthesized with 0.18μm standard cell CMOS
library. It is estimated to occupy 1.1 mm2 and the projected power consumption is 7.9mW at 120 MHz, which
meets the speed requirements of the tested standards. More results are included within the article.

Keywords: reconfigurable ASIP, embedded processors, baseband processors, low-power design, OFDM
synchronization

1 Introduction
Contemporary wireless standards allow for the radio to
have connectivity with more than one technology at the
same time. For example, the radio can be connected to
a Wi-Fi hotspot when a signal exists, or to a WiMAX
base station if the Wi-Fi signal is weak or does not
exist. The ability to connect to more than one technol-
ogy increases the reliability and the use of the radio’s
connectivity. It also enables applications that require
constant connectivity, such as remote health care and
remote industrial automation, which cannot tolerate any
loss of connectivity at any time. Moreover, there are still
competition, enhancements, regional variants, and new
versions of the wireless standards that emerge with
time. For example, in the field of 4G and beyond, the
marginal competing standards and the need to have an
easy migration path between different systems increases

the need for configurability without sacrificing through-
put, area or power consumption. This line of thinking
gave a boost to the concept of the software defined
radio (SDR) [1]. SDR, in general, is based on general
purpose digital signal processors (DSPs). Thus, it suffers
from limitations in throughput and power consumption.
However, the need for programmability and configur-
ability is unabated due to the proliferation of wireless
standards. Another approach to achieve configurability
without sacrificing power consumption is to use applica-
tion specific instruction-set processors (ASIP) [2-4]. In
ASIP technology, a core unit is programmed using a
specific instruction set that configures the core unit to
perform multiple functionalities.
For most of today’s and emerging standards, orthogo-

nal frequency division multiplexing (OFDM) was the
modulation scheme of choice in systems such as high
performance LAN type 2 (HIPERLAN/2) [5], IEEE
802.11a [6], IEEE 802.16 family [7] and 3GPP long term
evolution (LTE). OFDM’s main advantage is its ability

* Correspondence: mahmoudabdelall2005@yahoo.com
Center for Wireless Studies, Faculty of Engineering, Cairo University, Cairo,
Egypt

Said et al. EURASIP Journal on Embedded Systems 2012, 2012:2
http://jes.eurasipjournals.com/content/2012/1/2

© 2012 Said et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

mailto:mahmoudabdelall2005@yahoo.com
http://creativecommons.org/licenses/by/2.0

to alleviate the inter-symbol interference (ISI) caused by
multi-path fading channels, even for large
channel delay spreads. Hence, at the receiver, there is

no need to design complex channel equalizers, which
reduces the complexity and the power consumption of
the receiver. On the other hand, OFDM systems are
very sensitive to synchronization errors [8]. Therefore,
there is a need to design, and efficiently implement high
accuracy synchronization algorithms using embedded
reconfigurable engines that can support the increasing
number of OFDM-based standards. The concept of
reconfigurable engines for wireless applications has been
previously explored in the literature. Configurable radio
architectures that can support multiple standards were
proposed in [9,10], where the engine core consists of an
array of reconfigurable units. Poon [11] uses five differ-
ent configurable units to perform all tasks for the digital
part of the radio. Application specific processor archi-
tecture was proposed in [4] for OFDM channel estima-
tion. In our previous study [3], an ASIP architecture is
proposed to support synchronization tasks in OFDM
systems. In [3], we proposed only the architecture of
reconfigurable engine architecture to achieve a compro-
mise between powerful dedicated hardware implementa-
tions and very flexible general DSP processors, but with
limited programming capabilities.
Expanding on [3], an embedded reconfigurable ASIP-

based engine that can efficiently carry out OFDM synchro-
nization and acquisition tasks is presented. The main
building block of the engine is a core unit that was
designed to efficiently carry out synchronization tasks.
The core unit can be programmed with a special instruc-
tion set to optimize the usage of the hardware resources.
Memories for data and instructions, registers for inter-
mediate data storage, and an instruction decoder are all
parts of the the engine. The engine and the instruction set
are optimized for vector instructions, which are frequently
used in synchronization and acquisition algorithms. The
results show that the hardware multiplexing in this ASIP
solution reaches a smaller implementation area than the
solution of multiple dedicated implementations. In addi-
tion, it allows a higher degree of hardware reuse between
different algorithms in different standards.
The organization of the article is as follows: Section 2

introduces the OFDM system model. The detailed
engine architecture is proposed in Section 3. Section 4
discusses the algorithm selection and analysis of the
processing tasks, while the programming model is dis-
cussed in Section 5. Results of the proposed engine are
presented in Section 6. Section 7 concludes the article.

2 OFDM system model
A typical OFDM receiver is shown in Figure 1 The used
transmission model is described in detail in [8]. The

resulting time domain signal s(t) is composed of succes-
sive symbols where Symbol l is formed from N subcar-
riers, al,k (transmitted data), where l denotes the symbol
index and k is the subcarrier index. The subcarrier spa-

cing Δ =
Fs

N
where Fs is the sampling frequency. The

sampling time of the OFDM signal is Ts =
1
Fs

The N

subcarriers are divided between data, pilots and guard
bands according to the used OFDM standard. Pilots are
reference signals known at the receiver which are used
in data-aided estimations for synchronization or channel
estimation purposes. Guard bands are used in order to
limit the bandwidth of the transmitted signal to be less

than
1
Ts

A guard interval of length Ng samples is added

before each OFDM symbol to combat the multi path
fading channel effects. The total number of time sam-
ples in one OFDM symbol is Ns = N + Ng.
The received signal, when the transmitted signal passes

through a channel with an impulse response h(t) is

r(t) =
∑

i

hi(t)s(t − τi) + n(t) (1)

where delays τi are channel tap delays and n(t) is the
complex-valued additive white Gaussian noise (AWGN).
Sampling the signal at time instants nts, and removing
the guard interval yielding

rl,n = r((lNs + n)ts) (2)

Demodulation of the subcarriers via a Fast Fourier
Transform (FFT) yields the received data symbols:

Xl,k =
N−1∑
n=0

rl,ne−j2πnk/N (3)

This is equivalent to

Xl,k = al,k·Hl,k + nl,k (4)

where Hl,k is the channel frequency response at sub-
carrier k in symbol l and nl,k is the additive noise sam-
ples at subcarrier k in symbol l.
Three major synchronization problems result in

increasing the error rates at OFDM receivers:
- Inaccurate frame beginning detection.
- Carrier frequency offset (CFO) [8].
- Sampling clock frequency offset (SCFO) [8].
Figure 2 summarizes the synchronization processes in

a typical OFDM receiver. First, the incoming signal
passes through a packet detection block that will,
besides detection of packet existence, give a rough esti-
mate of the symbol beginning. Once a signal is detected,
exact frame boundary detection and compensation for

Said et al. EURASIP Journal on Embedded Systems 2012, 2012:2
http://jes.eurasipjournals.com/content/2012/1/2

Page 2 of 16

timing offset are performed. To maintain subcarrier
orthogonality, CFO is estimated, refined and corrected
after determination of frame boundaries. The signal
then passes through the FFT block to estimate the
transmitted symbols.
Tracking the variations of the CFO and SCFO is criti-

cal in OFDM systems due to their sensitivity to fre-
quency offsets. SCFO and the residual part of the CFO
(RCFO) are estimated and corrected in a tracking phase.
The synchronization functions are divided into two

main phases:
1. Acquisition phase. Four processes are performed in

this phase: symbol timing (frame boundary detection),
initial fractional CFO (FCFO) estimation, cell-search

(CS) and ICFO estimation. Correction of the estimated
errors is shown in Figure 2
2. Tracking phase. In this phase RCFO and SCFO are

estimated and corrected.
From the implementation point of view, a significant

amount of baseband processing takes place in the syn-
chronization sub-system. Optimized architectures that
fulfill the needs of the synchronization sub-system with
a high degree of configurability will have the advantage
in terms of area and power.

3 Design of the proposed engine
3.1 Engine architecture
The proposed application specific instruction set (ASIP)
synchronization engine achieves a compromise between

Figure 1 Typical OFDM receiver and processes of our baseband processor.

Figure 2 synchronization processes in a typical OFDM receiver.

Said et al. EURASIP Journal on Embedded Systems 2012, 2012:2
http://jes.eurasipjournals.com/content/2012/1/2

Page 3 of 16

powerful dedicated hardware implementations and very
flexible general DSP processors. All of the used units
are grouped together in one pipelined configurable unit
(CU). This core unit is optimized for synchronization
purposes as well as many other algorithms and allows
the execution of many complex operations. We enabled
a high degree of hardware reuse, and this resulted in
less area and removed many control overheads while a
lower degree of parallelism was attained. The choice of
a single unit without external accelerators is based on a
careful study of synchronization tasks involved within
OFDM systems and throughput requirement in the sup-
ported standards. Most of the commonly used accelera-
tors like COordinate Rotation DIgital Computer
(CORDIC) [12], maximum likelihood (ML) [11] and
other accelerators are included with the ordinary com-
plex multiply-accumulate (C-MAC) unit to be executed
on CU. This will keep power and area levels as low as
possible. The general architecture of the proposed
engine is shown in 3 It consists of the main CU, two
dual-port memory banks, embedded ROM for any used
reference sequences, an output updater (bank of regis-
ters) with a simple controller, two register files and the
control part (instruction decoder (ID), program memory
(PM), specialized control registers).
3.1.1 Configurable unit (CU)
The CU is connected to the output of a CU input gen-
erator and controlled directly by the instruction decoder
(ID) with a 26-bit control vector, which identifies the
working operation and the used elements inside the CU.
Figure 4 shows the internal design of CU. Many

operations are executed on the same CU. CU configura-
tion for major CU supported operations and the result-
ing operation are listed in Table 1 Even though the
inputs to the CU are complex most of the time, the
engine uses real data buses. This design was chosen to
remove the limitations imposed by complex data buses
on real data operations, especially on phase calculations.
The main operation of the CU is the Complex Multi-

ply ACcumulate (C-MAC). Mathematically, it can be
implemented in two ways, using either three or four real
multipliers. To limit the number of multipliers, three
multipliers are used, although five adders are required
as opposed to four adders in the four multipliers
scheme. An extra adder is added to allow the summa-
tion of eight different real inputs or four complex
inputs. In addition to the two large accumulators, the
CU uses internal multiplexers to configure the running
operation according to the control vector (CV).
The CU consists of six 12-bit real adders, three 13-bit

real multipliers followed by two 12-bit rounders, two
24-bit accumulators, two two’s complement operations,
ten 13-bit multiplexers (MUX) and two 24-bit shifters.
The eight ports (I1 ... I8) in Figure 4 are intended for
operations on real data while the six ports (I1 ... I6) can
be used alone to implement the complex multiplication
process. Real ADD/SUB operations are executed with
two different precisions (12-bit and 24-bit).
The CU is optimized by pipelining into three pipeline

stages. The first stage is an addition stage used for nor-
mal and vector complex multiplications. This adds the
benefit of having a first stage capable of adding eight

Figure 3 General architecture of the proposed engine.

Said et al. EURASIP Journal on Embedded Systems 2012, 2012:2
http://jes.eurasipjournals.com/content/2012/1/2

Page 4 of 16

real numbers before passing its output to the next addi-
tion stage (stage 3). The second stage is the multiplica-
tion stage. It has only one multiplier between two
registers to minimize the critical path of the overall
unit. The third stage is the second addition stage like
the first stage but it has only two adders instead of four.
One cycle of latency is achieved when pipelining the

CU in normal instructions. Vector instructions are exe-
cuted on a time multiplexing manner on the CU with a
maximum vector length of 256 elements. Among differ-
ent supported operations, the controlled accumulation
(CACC) operation needs the largest number of simulta-
neous complex input signals. CACC operation adds or
subtracts four complex words every cycle. This puts a
constraint on the memory system to supply the unit
with a maximum of four words every cycle. However in
this mode, no write operations can be executed. To
work in CACC mode, hardware configuration of the CU
with respect to the control vector is done. M1, M2, and
M3 multipliers of Figure 4 are bypassed while a running
configuration of the Add/Sub operations (A1 ... A8) are
controlled via a stored control sequence.

Time multiplexing of operations running on the
engine core limits its multi-process/cycle capabilities. A
maximum of one operation/cycle can be executed on
the engine core, no matter wither this operation is sim-
ple like addition or computationally complex like com-
plex-multiplications. Although the architecture has one
CU, the engine is scalable via adding multiple CU units
connected with each other by the two ports I9 and I10
to support larger systems.
3.1.2 Memory system
Memory is divided into two 286 word dual-port banks
(24-bit). Memory size is dominated by the maximum
supported correlation length of 256 in addition to the
free space needed to store any internal outputs. The
choice of the maximum correlation length was based on
the required performance in 802.16e and 3GPP-LTE
release 8. Inputs to the memory system is connected to
a Memory Input Generator in Figure 3, which is con-
trolled by the instruction decoder. Memory could accept
inputs from the external ports, Register File 2, main CU
output or the memory itself in a MOV operation. Mem-
ory controller handles the write operations and prevent
any racing conditions. The two banks are running on
the same operating frequency of the core unit. No spe-
cial addressing modes are required, and hence, address
generators are basically counters. Time sharing between
different tasks running on the processor allowed further
optimization in the memory system by increasing the
memory reuse option.
Two general purpose register files, Register File 1 and

Register File 2, in Figure 3 are used with a register input
generator controlled by the instruction decoder directly.
Register File 1 is of size 12-bit and holds 8 general pur-
pose registers to facilitate data flow operations, count-
ing, set outputs and many other useful operations.

Line slope (a)
Bias (b)

Phase error (in radian)

Subcarrier index

Symbol l

Symbol l+1

Symbol l+2

0-N/2 N/2

Figure 4 Architecture Of core configurable unit.

Table 1 Major CU supported operation

CU-configuration Resulting operation

C-MAC Auto-correlation

Cross-correlation

Euclidean distance calculation

Vector complex multiplication

Real multiply-add ab + cd

Controlled C-ACC BPSK preamble correlation

CORDIC Vectoring mode

Rotation mode

Maximum likelihood On-line comparison

Said et al. EURASIP Journal on Embedded Systems 2012, 2012:2
http://jes.eurasipjournals.com/content/2012/1/2

Page 5 of 16

Register File 2 is of size 24-bit but it consists of four
general purpose registers only. The first advantage of
them comes when dealing with movements of complex
data inside the engine. These optimization methods
beyond the traditional one fixed size register file allows
faster execution of real and complex data operations.
For example, moving a complex word from the memory
system as two (real, imaginary) parts would take double
latency beside the complexity in dealing with the two
parts as a one word in the executed program.
Reference correlation sequences are stored in 3072

byte ROM for the both of 802.16e and LTE release 8.
The ROM takes its address directly from the instruction
decoder with an internal counter for its address only.
All data can be transferred between different parts of
the engine through a data bus of four complex words
maximum.
3.1.3 Input/output interface
The engine interfaces with the outer world through a set
of input control signals (IC) and output control signals
(OC) beside two external ports for data transfers. Four
IC signals are connected directly with the instruction
decoder and used for acknowledgment about a certain
event. Another four OC signals output from the control-
ler of the output updater to identify the state of the
engine at any stage. The two external data transfer ports
are 24-bit wide each (12-bit real, 12-bit imaginary). One
port is connected to the time domain side, while the
other port is connected after the FFT operation. Any
read operation is carried out through one of these two
ports and with the two addresses external read address
1 and external read address 2. The accuracy of the cho-
sen number of bits is verified in Section 6.
The output updater holds the same output value on

the same port, until a control signal comes from the
instruction decoder to its controller to update the out-
put with a newer value in a certain register. The output
registers are general registers used to set any value as an
output. Here, we give output registers restricted names
to clarify the engine operation. The five output registers
holds the starting address, FCFO, CELL-ID, ICFO, and
SCFO. All of the five registers are 12-bit each. Typically,
Starting Address goes to the input buffer that holds the
FFT window to identify the first sample in the incoming
frame. The estimated FCFO is used by the CFO correc-
tion complex-multiplier to derotate the input samples.
CELL-ID is transferred to higher layers. ICFO is added
to the fractional part of the CFO to guarantee correct
reception with time. Estimated value of SCFO is consid-
ered as the seed for the ROB/STUFF correction algo-
rithm in [13].
While transferring data from any port to the internal

memory banks, no execution of any other instruction is
carried out. This control mechanism is achieved when

the controller holds the instruction inside the instruc-
tion register by re-entering the same instruction to the
instruction register till the end of the transfer process.
The same mechanism works for vector instructions,
where the controller re-enter the vector instruction to
the instruction register till the end of the execution
phase.
3.1.4 CORDIC algorithm
The CORDIC algorithm [12] can carry out many trigo-
nometric operations and is used here only for angle
measurements. The CORDIC stage is composed of
adders and shifters, as shown in Figure 5 The precision
of the output depends on the number of stages used.
Each additional stage adds one bit of precision. There
are three methods of implementation to the CORDIC
algorithm [12]; spatial multiplexing, time multiplexing
and joint spatial-temporal multiplexing. The time multi-
plexing method perfectly meets our engine design with
the addition of the two shifters in Figure 4 to implement
the CORDIC stage. The associated memory required
with it is called CORDIC look up table (LUT) of size 14
byte. Another control register is required to control the
sign of ADD/SUB module used in the next CORDIC
stage. The output angle here has a precision of 12 bits
and executes in 18 cycles.

3.2 Engine programming
Programming of the proposed embedded ASIP includes
three types of instructions. The first type is the ordinary
classes like program flow instructions (conditional and
unconditional jumps), move instructions, real, and com-
plex ADD/SUB instructions, interfacing control instruc-
tions (external reads, output set). The second type is
optimized instructions to facilitate the implementation
of synchronization subsystem tasks as well as other algo-
rithms in different parts of the engine. The third type is
vector instructions.
Ordinary instructions operate on single data points

stored in registers (RF1 & RF2), and the result is auto-
matically stored in another register. Most of instructions
of this type take one cycle to complete. All control
instructions belong to this simple class of instructions.
Optimized instructions are special instructions for spe-
cial purposes like the ANGLE instruction and the
BPCACC (discussed later). This kind of instructions
operates on single point or vector of complex numbers
stored either in the memory like BPCACC or in regis-
ters like ANGLE, and the result stored also in either
memory or registers. Execution of these instructions
always consist of multiple execution stages. Vector
instructions operate on vectors of complex numbers
stored in memories. The output is either stored in
another memory if there is no accumulation associated
with it, or in a register from register file 2 if there is an

Said et al. EURASIP Journal on Embedded Systems 2012, 2012:2
http://jes.eurasipjournals.com/content/2012/1/2

Page 6 of 16

accumulation. The number of cycles needed for vector
instructions depend on the vector length.
In normal operation, one instruction is fetched while

another one is decoded and executed as shown in Figure
6a In the execution of special type instructions like the
ANGLE instruction that measures the angle of a com-
plex number, the pipeline is stalled till the end of the
CORDIC subroutine. This operation is shown in Figure
6b When a vector instruction is fetched, a program flow
control mechanism is activated and the pipeline initiates
a counter with a control value and enter a stall state till
the end of execution before fetching the next instruction
as shown in Figure 6c
To illustrate the difference in execution of various

types of instructions, Table 2 shows an example of the
units used and units bypassed in the execution of an
instruction of each type. Each instruction is 20-bit wide
and the whole size of the required program memory is
512 instructions.

The CORDIC subroutine is executed when fetching the
ANGLE instruction (special type) in 18 cycles for a preci-
sion of 12-bits (as stated before). Shifters included with
the engine core are not general purpose shifters that
accept arbitrary inputs; they are used only in the execution
of the iterative CORDIC algorithm and are controlled by a
counter attached with the instruction decoder.
Although most of the instructions are either control

instructions or instructions that operate on single data
(ADD, SUB,...), the processor operates most of the time
on vector data. Hence, the processor is optimized for
operations on vectors of complex data or specialized
operations associated with many supported tasks. The
assembly program becomes relatively long for control or
single data instructions compared to what it fulfills.
The engine is programmed via a script (contain the

entire program) enters a primitive compiler. The compi-
ler outputs a (.hex and.mif) memory initialization file for
the program memory. The output file containing the

F D Exe Store

F D Exe Store

F D Exe1 StoreExe2 Exe3

F Stall

F D Exe Store

F Stall

D Exe

ExeD

(a)

(b)

(c)
Figure 5 Architecture of a single CORDIC stage.

Figure 6 Instructions Pipeline in case of (a) normal executions, (b) special executions and, (c) vector executions.

Said et al. EURASIP Journal on Embedded Systems 2012, 2012:2
http://jes.eurasipjournals.com/content/2012/1/2

Page 7 of 16

binary vector is downloaded into the program memory
to begin the program fetching.

4 Example algorithms analysis
In this section, we explain a set of typical synchroniza-
tion tasks usually performed in OFDM receiver. Typi-
cally, the receiver perform the following tasks:
1. Obtain coarse frame boundaries with a packet

detector.
2. Initiate a search over the samples selected from step

(1) to obtain fine frame boundaries. This step with step
(1) are called Frame boundary determination (FBD).
3. With the first sample in the frame known, estimate

and correct fractional CFO.
4. After FFT, estimate the ICFO and update the value

of the frequency of offset estimated in step (3).
5. For OFDM cellular standards, estimate the CELL-

ID from the given reference sequence.
6. Track and update the residual CFO (RCFO) and

SCFO with the non-preamble OFDM symbols.
For testing and evaluation purposes of the proposed

architecture, high level Matlab floating/fixed point mod-
els of IEEE802.16e and LTE Rel. 8 have been created to
apply the chosen algorithms in [8,13-15]. The proposed
embedded ASIP can be configured to implement the
chosen synchronization algorithms. It is capable of sup-
porting not only the chosen algorithms but it can sup-
port other algorithms as well.

4.1 Packet detection
Detection of the correct boundaries of the incoming
OFDM packets has a major impact on the performance
of all post FFT sub-systems. Therefore, good timing syn-
chronization algorithms in the acquisition stage will
allow early locking on the incoming signal. Using corre-
lation-based algorithms as a detection method directly
as in [16] and [17] will cost more energy in the ideal
state (no transmitted signals). On the other hand, using
a simple, but not accurate detection method, like single
or double sliding window (DSW) algorithms [18] to
detect the packet and then refine the estimate using cor-
relations will cost us lower energy.
In DSW algorithm, a decision variable is measured

and compared with a chosen threshold which depends
on the target probability of miss detection and the

probability of false alarm. Assume that the decision vari-
able is mn and the chosen threshold is th. A packet is
detected if mn >th at any sample instant n

an =
M−1∑
m=0

|rn−m|2 = an−1 + |rn|2 − |rn−M|2 (5)

bn =
L−1∑
l=0

|rn+1|2 = bn−1 + |rn+L|2 − |rn|2 (6)

mn =
an

bn
(7)

where an, bn, and M, L are the energies and sizes of
window A and window B, respectively.
The energy contained in any sample |rn|

2 can be mea-
sured with a complex multiplication unit in Figure 7a
with a conjugate flag at the second port. The compari-
son process is executed with a simple subtraction flag
check. The size of each window is chosen to be 64 sam-
ples, which gives a good performance at low signal to
noise ratio (SNR). From the implementation point of
view, a total of 384 bytes of memory are required here
with ADC resolution of 12-bit (12-bit real, 12-bit ima-
ginary); accuracy is verified by the engine results in Sec-
tion 6. The packet detector should re-evaluate the
decision parameter mn every new sample, so a decima-
tion in the incoming signal is carried out to leave room
for the execution of the required computations.

4.2 Symbol timing
In [14], a maximum likelihood (ML) symbol timing esti-
mator based on cyclic prefix (CP) correlation was pro-
posed. The estimated timing of the first sample, t̂, is

t̂ = arg max
n

[
2

∣∣∣∣∣
L−1∑
m=0

rn+m ∗ r∗
n+m+N

∣∣∣∣∣ − ρ

L−1∑
k=0

|rn+m|2 + |rn+m+N|2
]

(8)

where r is the correlation coefficient between rk and
rk+N

ρ =

∣∣∣∣∣∣∣
E(rn ∗ r∗

n+N)√
E

(|rn|2
)

E
(|rn+N|2)

∣∣∣∣∣∣∣ =
σ 2

s

σ 2
s + σ 2

n
=

SNR
SNR + 1

(9)

Table 2 Execution of three operations of different types

Operation Inputs source DM1,
DM2

M1, M2,
M3

A1,...,
A6

A7, A8 CORDIC
control

CORDIC
LUT

shifters ROMS output
updater

CMAC Data path (DM) active active active active off inactive inactive inactive inactive

Angle Register file 2 inactive bypassed bypassed active on active active inactive inactive

Read Data path
(External)

active inactive inactive inactive off inactive inactive inactive inactive

Said et al. EURASIP Journal on Embedded Systems 2012, 2012:2
http://jes.eurasipjournals.com/content/2012/1/2

Page 8 of 16

The boundaries of the search window come from the
packet detector. To prevent inter-symbol interference, a
reasonable shift inside the cyclic prefix is done. Hence,
if the detector gives an estimate for the first sample in
the symbol at m, the first correlation window begins at
m-s, where s denotes the safety shift back. The correla-
tion window slides over time till a search size of 2s + 1
are evaluated. This implies that the maximum absolute
value between 2s + 1 output correlation result corre-
sponds to the maximum likelihood starting sample. This
algorithm has proven its robustness against multi-path
fading channels, besides the advantage of being

unaffected by the received power level. Only the number
of samples L contributing in the cyclic prefix (CP) cor-
relation is affecting the performance of the estimator.
The proposed embedded engine is capable of support-

ing a maximum correlation length of 256 samples. This
maximum is chosen with respect to the required accu-
racy. This maximum is justified by the comparison
between floating point results and the proposed engine
results in Section 6. The maximum length of the contri-
buting samples is 256 and can be scaled easily with
respect to the required performance. The most complex
operation here is the complex multiplication in Equation
(8). Auto-correlation and Euclidean distance (ED) calcu-
lation (energy) in Equation (8) can be realized by the
standard complex multiply-accumulate (C-MAC) unit
shown in Figure 7a Subtraction of the output of ED
from the output of CP auto-correlation is performed
on-line by controlling the accumulation sign. Adders in
accumulators are two’s complement Add/Sub modules
controlled by the processor control unit. The last step is
the maximum absolute search between the 2s + 1 evalu-
ated result with the ML unit shown in Figure 7b

4.3 Fractional CFO estimation
After determination of the FFT window boundaries, the
CP is removed according to the indices given by FBD.
Fast acquisition of the FCFO requires a pre-FFT algo-
rithm that works without the need of training symbols.
With the existence of a frequency offset (Δf) in the
received signal rl,n, it will take the form in equation (10)

r′
l,n = rl,nej2π�fnts (10)

The task now is to derotate (multiply by exponential)
the received symbols with the term e−j2π�fnts to establish
accurate subcarrier orthogonality quickly. Multi-stage
synchronization strategy is used to achieve both fast and
accurate acquisition. In particular, two acquisition stages
(pre-FFT for FCFO and post-FFT for ICFO) are used in
our system, and then come the tracking of any possible
variations. The authors in [8] have proposed a non-data
aided estimation algorithm of the FCFO based on the
correlation result of the removed CP in Equation (11).

Δf =
1

2πNts
∗ arg

(
L−1∑
n=θ

rT+nr∗
T+n+N

)
(11)

where T is the estimated starting sample index from
FBD, θ is the starting point of the correlation window
and L is the cyclic prefix length. The reason for not
starting the correlation window from the beginning of
the cyclic prefix is the multi-path fading channel delay
spread τ effect on the estimation performance. The
value of θ is chosen such that θ >τ, so that the channel

Figure 7 Architecture of: (a) standard C-MAC unit, (b) ML unit,
(c) controlled accumulation unit and, (d) standard multiply-add
unit.

Said et al. EURASIP Journal on Embedded Systems 2012, 2012:2
http://jes.eurasipjournals.com/content/2012/1/2

Page 9 of 16

effect is the same in the two parts of the correlation and
the output is affected only by the added white noise.
Equation (11) can simply be executed on the same

complex multiply-accumulate (CMAC) unit used for
FBD in Figure 7a Memory requirements here depend on
the selected correlation window length with a maximum
of 256 samples as stated before. The only difference is
the calculation of the correlation angle before multiply-
ing it by a constant. Angle estimation is carried out
using the iterative CORDIC algorithm [12]. More details
about the implementation of this algorithm were
described in Section 3.

4.4 Joint ICFO & CS estimation
In the literature, estimation of the ICFO usually depends
on the reference preamble symbol like in 802.16e
(WiMAX) or a special synchronization symbols like in
LTE. These reference symbols carry also the CELL-ID
information. Joint CELL-ID detection and ICFO estima-
tion algorithms are proposed in [19,20]. The task of find-
ing the CELL-ID is named Cell Search (CS). In standards
like 802.16e and LTE release 8, reference signals that are
used to carry such information are binary random
sequences. This feature can make the implementation of
this block easier. Assume that the received preamble is Q
(k), where k is the subcarrier index. H(k) is the channel
impulse response at subcarrier number k. Autocorrelation
of the received reference symbol is evaluated as follows:

�{Q(k)Q∗(k − 1)} = �{H(k)Pj(k + I)H∗(k − 1)P∗
j (k + I − 1)}

≈ |H(k)|2Dj(k + I)
(12)

where
- Q (k - 1) : is the first non-zero subcarrier before k.
- Pj (k) : is the stored reference sequence of index (j).
- Dj(k) = Pj(k).P∗

j (k − 1): is the autocorrelation result
of the stored sequences Pj.
- I : is the integral frequency offset normalized to the

subcarrier spacing.
For correlation purposes, shifted versions of Pj must

also be stored. For example, if we have a maximum
ICFO of Im, [-Im, Im], we must store 2Im + 1 version
from each correlation sequence Pj.
The autocorrelation in Equation (5.4) is used to miti-

gate the effect of the multi-path fading channel H(k) by
multiplying each active subcarrier by the conjugate of its
predecessor assuming the channel added phase is nearly
equal on both of them. A correlation of the reference
patterns shifted by the expected values of the ICFO is
evaluated as follows:

MI,j
i =

Np−1∑
k=0

Dj(k + I)�{Q(k)Q∗(k − 1)} (13)

Where ℜ{Q (k) Q* (k - 1)} is called the differential sig-
nal and Np is the number of reference subcarriers con-
tributing to the cross-correlation between the received
reference sequence and the stored sequences. The esti-
mated ICFO and CELL-ID is given by:(

Î, ĵ
)

= arg max
I,j

MI,J
I (14)

The complexity of this method is acceptable and can
be implemented easily on the proposed embedded ASIP,
noting that Dj (k + I) in Equation (13) does not have to
be calculated on the fly, but can be calculated in
advance and stored in the receiver memory. The calcu-
lation of ℜ{Q (k). Q* (k - 1)} for k = 0, 1, ..., Np - 1 in
Equation (13) requires an Np complex multiplications.
The binary nature of Dj (k + i) in Equation (13) makes
the remaining computations needed to obtain MI,j

I
Bin-

ary correlations can be performed using the controlled
accumulation (C-ACC) unit shown in Figure 7c Accu-
mulation sign is controlled via stored (shifted and nor-
malized) reference sequence. The constraint on the
defined maximum possible shift Im comes from the sym-
bol duration and the available cycle budget. For exam-
ple, in IEEE 802.16e, for a maximum ICFO of nine
subcarriers (in the range [-9,9]) we need to evaluate 722
[20] different correlation outputs to choose the maxi-
mum absolute value as the correct estimate. Comparison
between the evaluated correlation results is done on the
fly after every new correlation output. Further optimiza-
tions of this processing type is done in the design of
processor computational core. The engine is optimized
not only for this algorithm, but for many other algo-
rithms as well.

4.5 Joint RCFO & SCFO estimation
All previous tasks belong to the acquisition phase. After
the acquisition phase, subcarrier orthogonality is loosely
established. However, OFDM based systems are very
sensitive to the variations of frequency offset. Hence,
tracking of these variations with time is important to
maintain the resulting signal to error ratio (SER).
Another important issue is the SCFO between the trans-
mitter and receiver. A joint data-aided estimation algo-
rithms for RCFO and SCFO are proposed in [15,13],
where reference pilot subcarriers are used. In [15], the
joint effect of a RCFO δfr with the existence of a SCFO
ζ on the received subcarrier phases after the FFT are
shown in Figure 8 This effect is translated in Equation
(15)

X′
l,k = e−j2πδfr(l(N+Ng)− N

2)ts e
−j2πk

(
l
N+Ng

N −0.5
)

ς
Xl,k

(15)

Said et al. EURASIP Journal on Embedded Systems 2012, 2012:2
http://jes.eurasipjournals.com/content/2012/1/2

Page 10 of 16

To obtain Equation (15), some terms were neglected.
In reality these terms are not neglected and will cause
ICI that is measured and stated in the engine results in
Section 6.
In general, the symbol number l will have a phase

error line with bias -2πδfr(l(N + Ng)) and slope

−2πς

(
l(N + Ng)

N
− 0.5

)
. In [13], pilot subcarriers are

used to form a phase error line that has a bias b and
slope a. Let the differential angle at pilot subcarrier
index k in symbol number l is jk,l, and xk is the pilot
index. Estimation of the phase error line bias b and
slope a is carried out as follows:

a
∑

x2
k + b

∑
xk =

∑
xkφk,l

a
∑

xk + bNpi =
∑

φk,l

(16)

The differential angle jk,l is evaluated by multiplying
the pilot k at symbol l with the conjugate of the similar
pilot at the same index k at symbol l - 1 (the similar
pilot could be in an earlier symbol) to mitigate the
channel effect. The SCFO ζ is evaluated from the esti-
mated line slope a and the RCFO δfr could be found
from the bias b.

ς =
aN

2π(N + Ng)

δfr =
b

2π ts(N + Ng)

(17)

The complexity of this algorithm on the proposed
embedded engine is dominated by the vector complex
conjugate multiplication of the received pilot pattern
every symbol and the measurement of pilots angles in
Equation (16) using the CORDIC Algorithm [12]. These
measured angles are accumulated in two manners: nor-
mal accumulation, real multiply accumulate in Figure 7d

The memory used to same successive pilot patterns plus
the resulting vectors after the conjugate multiplication is
relatively large and considered well in the design of the
memory system.

5 Algorithm programming on the engine
5.1 Packet detection
The engine was programmed to run the packet detec-
tion algorithm, where a new sample read operation is
issued every ts (one sample duration). In order to imple-
ment the packet detection algorithm with the time
requirements of 802.16e and LTE release 8, a down
sampling of the received signal by a factor of 5 is
required. Simulation results showed that there is no sig-
nificant performance loss due to the down sampling
needed for the execution of this task on the engine core.
The whole packet detection program executes in 31
cycles and repeated with the next new sample. Once a
packet is detected a detection control signal will rise to
begin the symbol timing procedure.

5.2 Symbol timing
The symbol timing algorithm begins with a read opera-
tion of the two parts of the cyclic prefix from External
Port 1. In the read operation, we identify the destination
memory bank and the length of the read vector (Ex:
READ P1 : DM1,276). The core unit is configured to
run the auto-correlation operation through a CMAC
instruction with a conjugate flag set on the second
input. The output is stored in a register from Register
File 2 till the energy (Euclidean distance EDACC) con-
tained in the first and the second part of the cyclic pre-
fix are evaluated. A 24-bit subtraction operation (LADD)
between the stored result and the resulting energy will
give the first correlation output. Till now this is consid-
ered the only and the largest result, so its index is stored
in a register from Register File 1.
Beginning the correlation in Equation 8 from scratch

every time is not practical and consumes more energy.
The next correlation output can be extracted directly
from the estimated correlation output by setting the
memory address step by 1 and repeat what is done for
the evaluation of the first correlation output. The corre-
lation length this time is not the whole cyclic prefix
length but only a single data point. This iterative
approach reduces the required execution energy as well
as the program length. Once we get a new correlation
result, comparison between the stored largest correlation
result and the new result is executed. If the new result is
larger, an update is done for both the stored value and
the index of the largest. A time locking control signal is
flagged from the engine when the whole 2 * s + 1 results
are evaluated. The stored index, which corresponds to
the largest correlation result, is the correct start

+/- +/-+/-

LUT

Reg RegReg

ASRASR

iXiY

1iX1iY1iZ
Figure 8 Joint effect of RCFO & SCFO on subcarriers after FFT.

Said et al. EURASIP Journal on Embedded Systems 2012, 2012:2
http://jes.eurasipjournals.com/content/2012/1/2

Page 11 of 16

location. The output Starting Address is updated via the
output updater by a SET instruction with the stored
value in Register File 1.
To clarify how the assembly code looks like, a part of

the used programming code for symbol timing is shown
in Figure 9

5.3 Fractional carrier frequency offset estimation
At this stage, the cyclic prefix is still stored in DM1 and
DM2. So, no read operation is issued and the correla-
tion begins directly with the known estimated index
from FBD. The correlation output then passes by the
CORDIC algorithm using the ANGLE instruction to
estimate the output phase. The output of the ANGLE
instruction is stored in a register from Register File 1.
According to Equation (11), FCFO is estimated from the

output phase by a constant multiplication by
1

2πNts
.

The update on the output FCFO register is carried out
via the output updater with the same SET instruction.

5.4 Cell-search & integral carrier frequency offset
With the existence of an ICFO, the number of correla-
tions needed to identify the transmitter (CELL-ID) in
modern cellular networks can be very large due to the
large number of reference sequences associated with
each standard (114 for 802.16e, 504 for LTE release 8).
A special instruction, called BPCACC, is used for the
evaluation of a correlation with a binary sequence. The
BPCACC instruction is capable of evaluating a binary

correlation of length Nc in
Nc

4
+ 1 clock cycles. The core

unit should have 4 new complex numbers every cycle in
the execution of the BPCACC instruction.
The symbol number of the received reference symbol

is known at the receiver. Separation of this symbol is

R1R2R3R4R5R6R7R8R9R1
0

R1 R3R2

44

Figure 9 Part of the assembly code used for symbol timing.

Said et al. EURASIP Journal on Embedded Systems 2012, 2012:2
http://jes.eurasipjournals.com/content/2012/1/2

Page 12 of 16

done after the FFT, as well as the removal of the guard
bands. A read operation from External Port 2 is issued
to store the received reference symbol in DM1. To read
four successive complex samples from the received refer-
ence symbol, a copy of the received reference symbol is
stored in DM2. Memory step registers are set to four, so
that each port from the four ports of the two memory
banks will provide the engine by a different complex data
sample every cycle. This allows the memory system to out-
put four consecutive complex words each cycle. We use
DM1 to get the differential signal in, which is of length Nc,
and store it in DM2. Then, a copy of the contents of DM2
is moved again to DM1. The core unit is configured to
perform the binary correlation by adding four complex
numbers together with the ADD/SUB signals controlled
by the correlation sequence. Every combination of 4-bits
from the correlation sequence correspond to a combina-
tion of 8 ADD/SUB signals to control the operation of the
adders A1 to A8.
Every new correlation result is compared with the

maximum previous result and the index of the maxi-
mum correlation output is stored in a register from Reg-
ister File 1. This index corresponds to the correct ICFO
and the attached CELL-ID. The final step in the aquis-
tion phase is updating the values of ICFO and CELL-ID
output registers.

5.5 Joint RCFO & SCFO
For symbols that carry pilot subcarriers, an input con-
trol signal is activated and a read operation is issued

from External Port 2. For example, in IEEE 802.16e and
3GPP LTE release 8, indices of pilots in a certain sym-
bol are shifted from the indices of pilots in the previous
symbol. Figure 10 shows the pilot pattern in IEEE
802.16e in case of DL-PUSC. Pilots are arranged in the
data memory with the same order they are received.
Pilot patterns are arranged as follows: The first received
pilot pattern and the third pilot pattern are stored in
DM1, while the second pattern and the fourth pattern
are stored in DM2. This arrangement helps to make the
cross-correlation in Equation (16) easier. The CU is
configured to perform the cross-correlation between
DM1 and DM2 initialized at the correlation starting
point (number of the contributing pilots is scalable).
The output of the cross-correlation between the first
received pilots (P1) and previously received pilots that
have the same indices (P3 in 802.16e and LTE release 8)
is stored in DM2. Every output complex data word is
passed through the CORDIC algorithm with the ANGLE
instruction to estimate its phase angle. Operations on
the estimated angles are easier with the real data paths
chosen for the implementation of the proposed engine.
Estimated angles are multiplied with the corresponding
known pilot indices and accumulated to get the term
∑xkjk,l in Equation (16). Then, the output phases are
summed together to get the term ∑jk,l. Now, all terms
of Equation (16) are known and stored in the internal
registers or given as immediate values (like the number
of pilots Np). The estimated RCFO is added to the cur-
rent total CFO and updated on the output ports. With

Instruction
Decoder

External Port 1(

12-bit real, 12-

External Port 2

S 0.11 (R) + S

External Contro
Ctrl 1

Ctrl 4

CU

CU Input Generator

Outputs & Flags

Registers Input
Generators

Register File 1 Register File 2

Register File
Addresses

Ctrl

Ctrl

CV

Program
Memory
(PM)

Instruction
Register

Program Address

WE

Memory Input
Generator

Ctrl

Bank 1 Bank 2

Memory
Controller

Ctrl

Control Bus

CORDIC Control

ROM 1 ROM 2

Address Sel.

OUT

Program Flow Control
ON-CHIP
Network

}

Data Bus

O
utput

C
ontrolls

E
xternalR

ead
A
ddress

1
(Tim

e
D
om
ain)

E
xternalR

ead
A
ddress

2
(Freq.D

om
ain)

FC
FO

IC
FO

C
E
LL-ID

S
C
FO

S
tarting

A
ddress

C
trl1

C
trl4

{

OUTPUT UPDATER

Data Bus

Figure 10 Pilot pattern in IEEE 802.16e.

Said et al. EURASIP Journal on Embedded Systems 2012, 2012:2
http://jes.eurasipjournals.com/content/2012/1/2

Page 13 of 16

another SET instruction, SCFO is fed to the ROB/
STUFF correction Algorithm [13] connected with the
SCFO port.

6 Performance evaluation
The performance of the proposed engine is measured
against floating point Matlab model to assess its accu-
racy and the effect of round-off errors. The implementa-
tion efficiency is projected for the resulting core area
and power consumption to implement the supported
operations.
Bit-accurate fixed point simulations are used for func-

tional verification, the generation of test vectors and
building verification suites. The word length chosen for
the execution unit is determined by the maximum preci-
sion needed in any algorithm. FCFO estimation needs
24-bit word, which turned out to be the largest number
needed. To verify the accuracy of the chosen number of
bits, comparison between floating point (FP) results and
engine results for FCFO estimation (normalized by sub-
carrier spacing) is shown in Figure 11 with a correlation
length of 96 and 60 in WiMAX and LTE, respectively.
The processor uses one embedded configurable unit

(CU) besides the controller core. A total of 47.4 Kbit of
memory is distributed among the main data banks, the
reference ROMS, CORDIC LUT and a 10 Kbit program
memory.
The Altera Stratix III FPGA kit is used to functionally

verify the proposed design while Synopsys Design Com-
piler is used to estimate the chip area and the design
static power consumption (ASIC design). The engine is
coded using Verilog HDL, which is compatible with

Synopsys Design Compiler. Mentor-Graphics Modelsim
was used for functional simulations.
First the design was synthesized with the Altera Quar-

tus II and programmed on a Stratix III (Stratix III
EP3SC150 FPGA kit) FPGA to verify the design func-
tionality. Then, The processor was synthesized in a
0.18μm CMOS process at a voltage of 1.8 V using
Synopsys Design Compiler. The engine, without the
memory, is estimated to occupy 1.1mm2 and is esti-
mated to consume an average static power of 7.9 mW
when running at a speed of 120 MHz.
The proposed engine’s control overhead is less than

10% of the total processing cycles. Pipelined processing
of data is interrupted mainly by CORDIC subroutine in
an average of 4820 cycles/symbol. A total of 95 MIPS
are supported @ 120 MHz.
Engine features that helped to get a low chip area and

power consumption are:
1. The use of optimized instruction set. This removed

many control overheads and allowed faster executions.
2. Memory architecture that reduces memory interac-

tions, even with complex vector instructions.
3. The mechanism of data movement to/from the CU

and the memories.
4. Grouping of all units and increasing the degree of

hardware reuse.
5. No cache memory is used.
Comparison between the engine results and other

dedicated and configurable architectures results in terms
of power consumption, not accounting for memory in
our engine, is shown in Table 3 The powers of the sta-
ted architectures are scaled (technology & frequency

Frequency Axis

Ti
m
e
A
xi
s

Added pilot using time interpolation

Estimated pilot using frequency filtering
Figure 11 Comparison between FP results and engine results in FCFC estimation.

Said et al. EURASIP Journal on Embedded Systems 2012, 2012:2
http://jes.eurasipjournals.com/content/2012/1/2

Page 14 of 16

scaling) to match the proposed engine. Based on the
estimated power consumption of the proposed engine,
the engine is more power. In [23], the proposed archi-
tecture supports only symbol timing and FCFO estima-
tion. It is ten times power efficient as it uses only the
signs of the data samples, but it causes large perfor-
mance degradation.
Table 4 illustrates the cycle budget for various syn-

chronization sub-tasks in IEEE802.16e and 3GPP LTE
Rel. 8 for the most demanding parameters specified in
Table 5
A comparison between FPGA dedicated hardware

implementation results and engine results in WiMAX is
shown in Table 6 for the parameters specified in Table
5 The area is reduced by a factor of three while the
latency is slightly increased in some tasks but still meet-
ing the standard requirements.
Syntheses results of the CU on a STRATIX III FPGA

are tabulated in Table 7
We programmed the processor using one complete

program that is executed at the beginning of every new
frame. Otherwise, only the packet detection part of the
code is executed till the beginning of an incoming
frame. Tracking algorithms have proven to be the most
power consuming as it is executed every symbol, unlike
the acquisition algorithms that executes only at the
beginning of reception.
To fully utilize the capabilities of the proposed engine,

it is recommended to maximize the utilization of opera-
tions that have a fast execution phase in the instruction
set. This requires understanding the proposed architec-
ture with the attached instruction set when developing
the algorithms. The assembly programmer should take

care of various parameters that make the execution fas-
ter. For example, if pilot subcarriers are arranged at the
same indices over time, there is no need to use special
arrangements like the one shown in Figure 10 Normal
arrangement of pilots beside each other will reduce the
complexity when executing the rest of RCFO & SCFO
estimation algorithm.
The engine is verified by running all the synchroniza-

tion subsystem tasks in 802.16e and LTE release 8. It
meets the timing requirements @ 120 MHz, while the
maximum operating frequency is 149 MHz. To support
larger systems in a scalable way, more than one CU can
be inserted and controlled with the same control vector.
In this case, accumulation outputs O3, O4 in Figure 4

Table 3 Power comparison between the proposed engine
and other architectures

Method Implementation
type

Task Scaled power
(mW)

[21] Configurable Symbol timing 148.58

[22] Dedicated Symbol timing 22.5

[23] Dedicated Symbol timing,
FCFO

5.13
(Conventional)

0.3541 (sign ML)

Proposed
ASIP

Configurable All in Table 4 8

Table 4 Resulting cycle budget for different tasks

Processing Task # Cycles (WiMAX) Latency @ 120 MHz (μs) # Cycles (LTE) Latency @ 120 MHz (μs)

FBD 894/frame 7.45 606/frame 5.05

FCFO 214/frame 1.78 142/frame 1.16

CS # ICFO 10830/frame 90.25 3520/frame 29.33

RCFO 5288/symbol 44.117 4408/symbol 36.73

SCFO 5284/symbol 44.08 4404/symbol 36.70

Table 5 Parameters in IEEE 802.16e, LTE Rel. 8 (PSS, SSS
are primary and secondary synchronizationsymbols)

parameter IEEE 802.16e LTE Rel. 8

Useful symbol time (μs) 91.428 66.667

Subcarrier spacing (KHz) 10.9 15

Max. CP length (samples) 256 (22.85 μs) 160 (10.41 μs)

Max. number of pilots 240 200

Max. preamble length 2048 72 (PSS), 72 (SSS)

Table 6 Comparison between dedicated implementations
and engine results in WiMAX

Process # Gates (k) # Mul. # Cycles Max. Freq. (MHz)

FBD 49 1 21 147

FCFO 18 1 142 161

CS # ICFO 251 4 5112 107

RCFO 54 2 2644 145

SCFO 54 2 2640 145

Proposed 118 3 Table 4 159

Table 7 Synthesis results

FPGA type Altera Stratix III EP3SC150

Total ALUT 752/113,600 (< 1%)

DSP blocks (18bit) 3

Dedicated logic registers 262/113,600 (< 1%)

Block RAM 54.4844/5499 Kbit (< 1%)

Max. clock frequency 159MHz

Said et al. EURASIP Journal on Embedded Systems 2012, 2012:2
http://jes.eurasipjournals.com/content/2012/1/2

Page 15 of 16

are fed directly to another unit through the two input
ports I9, I10.

7 Conclusion
In this article, a scalable embedded reconfigurable base-
band ASIP for OFDM synchronization sub-system has
been proposed. The processor can support a multitude
of OFDM-based standards. Although the engine is opti-
mized for OFDM synchronization purposes through
detailed analysis of synchronization tasks in the different
OFDM-based standards, it also offers a high degree of
flexibility to support other simple and vector operations.
Area, power and hardware complexity are reduced
through reconfiguration of a single unit to support mul-
tiple special operations optimized for synchronization
sub-system. The processor was successfully tested on
IEEE 802.16e and 3GPP LTE Rel. 8 standards. Synthesis
results show that it is efficient in terms of throughput,
area and power consumption.

Acknowledgements
The authors would like to thank H.A.H. Fahmy, K. Osama, and H. Hamed for
their invaluable comments while preparing this article.

Competing interests
The authors declare that they have no competing interests.

Received: 15 July 2011 Accepted: 26 March 2012
Published: 26 March 2012

References
1. Glossner J, Iancu D, Jin L, Hokenek E, Moudgill M: A software-defined

communications baseband design. IEEE Commun Mag 2003, 41:120-128.
2. Vogt N, Wehn T: A Reconfigurable ASIP for convolutional and turbo

decoding in an SDR environment. IEEE Trans Very Large Scale Integrat (VLSI)
Syst 2008, 16:1309-1320.

3. Abdelall M, Shalash AF, Fahmy HAH: A reconfigurable baseband processor
for wireless OFDM synchronization sub-system. IEEE Int Symp Circ Syst
2011.

4. Azar C, Ojail M, Chevobbe S, David R: CERA: a channel estimation
reconfigurable architecture. IEEE Int Conf Telecom-mun ICT 2010,
17:957-964.

5. ETSI Broadband radio access networks (BRAN), Hiperlan type2; physical (PHY)
layer, ETSI BRAN, Technical Report 2000, 101:475.

6. IEEE802.11, Wireless LAN Medium Access Control(MAC) and Physical Layer
(PHY) specification: High-Speed Physical Layer in the 5GHz Band, IEEE Std
802.11a-1999, IEEE Computer Society 2000.

7. IEEE, (IEEE) Standard for Local and metropolitan area networks, Part 16: Air
Interface for Fixed and Mobile Broadband Wireless Access Systems, IEEE
802.16e-2005 and IEEE 802.16-2004/Corl-2005 2006.

8. Speth M, Fechtel SA, Fock G, Meyr H: Optimum receiver design for
wireless broad-band systems using OFDM: Part I. IEEE Trans Commun
1999, 47:1668-1677.

9. Mei B, Lambrechts A, Verkest D: Architecture exploration for a
reconfigurable architecture template. IEEE Des Test Comput 2005,
22:90-101.

10. Ebeling C, Fisher C, Xing G, Shen M, Liu H: Implementing an OFDM
receiver on the RaPiD reconfigurable architecture. IEEE Trans Signal
Process 2004, 53:1436-1448.

11. Poon ASY: An energy-efficient reconfigurable baseband processor for
wireless communications. IEEE Trans VLSI 2007, 15:319-327.

12. Dawid H, Meyr H: CORDIC algorithms and architectures. Digital Signal
Process Multimedia Syst 1999, 2:623-655.

13. Wu J-M, Chou C-H: Baseband Sampling Clock Frequency Synchronization for
WiMAX Systems, Institute of Communications Engineering National Tsing Hua
University Hsinchu 2005.

14. van de Beek JJ, Sandell M, Borjesson PO: ML Estimation of Time and
Frequency Offset in OFDM Systems. IEEE Trans Signal Process 1997,
45:1800-1805.

15. Speth M, Fechtel SA, Fock G, Meyr H: Optimum receiver design for OFDM-
based broadband transmission. II A case study IEEE Trans Commun 2001,
49:571-578.

16. Bhatt T, Sundaramurthy V, Zhang JC, McCain D: Initial Synchronization for
802.16e Downlink,Signals, Asilomar Conference on Systems and Computers
ACSSC 2006, 40:701-707.

17. Tang H, Lau KY, Brodersen RW: Synchronization Schemes for Packet
OFDM System. IEEE Int Conf Commun ICC 2003, 5:3346-3350.

18. Heiskala H, Terry JT: OFDM wireless LANs: A Theoretical and Practical
Guide. Sams Publishing, Indianapolis 2002.

19. Hung K-C, Lin DW: Joint detection of integral carrier frequency offset
and preamble index in OFDMA WiMAX downlink synchronization. IEEE
Wireless Communications and Networking Conference (WCNC) 2007,
1959-1964.

20. Lin Y-C, Su S-L, Wang H-C: A low complexity cell search method for IEEE
802.16e OFDMA systems. International Conference on Advanced
Communication Technology (ICACT) 2009, 2:980-984.

21. Harju L, Nurmi J: A synchronization coprocessor architecture for WCDMA/
OFDM mobile terminal implementations. International Symposium on
System-on-Chip 2005, 141-145.

22. Troya A, Maharatna K, Krstic M, Grass E: Low-power VLSI implementation
of the inner receiver for OFDM-Based WLAN systems. IEEE Trans Circ Syst
2008, 55:672-686.

23. Li X, Zheng Y, Lai Z: A low complexity sign ML detector for symbol and
frequency synchronization of OFDM systems. IEEE Trans Consumer
Electron 2006, 52:317-320.

doi:10.1186/1687-3963-2012-2
Cite this article as: Said et al.: Embedded reconfigurable
synchronization & acquisition ASIP for a multi-standard OFDM receiver.
EURASIP Journal on Embedded Systems 2012 2012:2.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

Said et al. EURASIP Journal on Embedded Systems 2012, 2012:2
http://jes.eurasipjournals.com/content/2012/1/2

Page 16 of 16

http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	1 Introduction
	2 OFDM system model
	3 Design of the proposed engine
	3.1 Engine architecture
	3.1.1 Configurable unit (CU)
	3.1.2 Memory system
	3.1.3 Input/output interface
	3.1.4 CORDIC algorithm

	3.2 Engine programming

	4 Example algorithms analysis
	4.1 Packet detection
	4.2 Symbol timing
	4.3 Fractional CFO estimation
	4.4 Joint ICFO & CS estimation
	4.5 Joint RCFO & SCFO estimation

	5 Algorithm programming on the engine
	5.1 Packet detection
	5.2 Symbol timing
	5.3 Fractional carrier frequency offset estimation
	5.4 Cell-search & integral carrier frequency offset
	5.5 Joint RCFO & SCFO

	6 Performance evaluation
	7 Conclusion
	Acknowledgements
	Competing interests
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 500
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 500
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

