
Full Duplex Communications for the 
Next Generation Wireless Networks 

Prof. Octavia A. Dobre 

Electrical and Computer Engineering 
Faculty of  Engineering and Applied Science 

Memorial University, Canada



Acknowledgments
I would like to thank Dr. Khaled M. Fouad Esayed and Dr. Hossam A. Abdelfattah for the invitation to give a talk at

- M. Elsayed, A. A. El-Banna, O. A. Dobre, W. Shiu, and P. Wang, “Machine learning-based self-interference cancellation for 
full-duplex radio: Approaches, open challenges, and future research directions,” (Invited paper), IEEE Open Journal of 
Vehicular Technology, Apr. 2023.

- M. Elsayed, A. A. El-Banna, O. A. Dobre, W. Shiu, and P. Wang, “Hybrid-layers neural network architectures for modeling 
the self-interference in full-duplex systems,” IEEE Transactions on Vehicular Technology, vol. 71, issue 6, pp. 6291-6307, June 
2022.

- M. Elsayed, A. A. El-Banna, O. A. Dobre, W. Shiu, and P. Wang, “Full-duplex self-interference cancellation using dual-
neurons neural networks,” IEEE Communications Letters, vol. 26, issue 3, pp. 557-561, Mar. 2022.

- M. Elsayed, A. A. El-Banna, O. A. Dobre, W. Shiu, and P. Wang, “Low complexity neural network structures for self-
interference cancellation in full-duplex radio,” IEEE Communications Letters, vol. 25, issue 1, pp.181-185, Jan. 2021. 

This work has been supported in part by the Huawei Technologies Canada.



3

Newfoundland & Labrador

Newfoundland & Labrador to/
from other major cities
- to New York (3.5 hrs) and 
Miami (~5 hrs)

Where we are located



Memorial University – the largest university in Atlantic Canada 

Times Higher Education (THE) 2022
• Top 251-300 in Engineering and Technology 

Faculty of Engineering and  
Applied Science



Wireless 
Commun.

Underwater 
Commun.

Memorial’s Advanced 
Research Laboratory on 
Communications

Research Overview

Optical 
Commun.

https://www.mun.ca/engineering/research/facilities/labs/ece/marlowc.php
https://www.mun.ca/engineering/research/facilities/labs/ece/marlowc.php
https://www.mun.ca/engineering/research/facilities/labs/ece/marlowc.php


6Research Overview

RESEARCH TOPICS 
• Artificial Intelligence for Communications 
• Wireless Communications: 

• Technologies for Beyond 5G – 6G Wireless Networks: ISAC, RIS/IRS, NTN, FD 
• Resource Allocation Designs in Wireless Networks 
• Blind Signal Identification 

• Optical Communications: Parameter Estimation and Non-linearity Compensation in Long-Haul Optical Networks 
• Underwater Communications: Channel Estimation, FD, NOMA 

COLLABORATIONS  
Memorial: +10 faculty members – different departments in 
Engineering, Computer Science, Mathematics & Statistics 
Canada: UBC, University of Toronto, Dalhousie University 
International: 15 institutions in countries 10 

FUNDING 16 million dollars
    Sources:  NSERC, MITACS, CFI, ACOA, InnovateNL/RDC,  
      DRDC, CRC, DoD, Statoil/Equinor, Altera/Intel Canada, Huawei Tech. Canada, Agile Tech. 
                      EION, Allen Vanguard, ThinkRF, DTA Systems, Keithley/Agilent

~



7W. Jiang et al., “The road towards 6G: A comprehensive survey,” IEEE Open Journal of Communications Society, pp. 334-366, Feb. 2021.

The Hyper-Connected Future World: NextG Networks

Key Areas 

• Intelligent systems 

• Digital twin 

• THz devices &  
communications 

• Intelligent reflective 
surface 

• Non-terrestrial networks & 
Internetworking networks 

• Integrated sensing and 
comm. 

• Holographic-type 
communications 

• Quantum comms & 
computing 

• Security and privacy

Sensing



• Full-duplex Communications  

• Self-interference Cancellation (SIC) in Full-duplex 
Transceivers  

• Full-duplex transceiver model 

• Neural network (NN)-based SIC 

• Support vector regressor (SVR)-based SIC 

• Achieved results & comparisons (with other methods) 

• Summary, Conclusions, and Future Work

8

Outline



9Full-Duplex Communications

• H. V. Nguyen et al., “Joint power control and user association for NOMA-based full-
duplex systems,” IEEE Transactions on Communications, Nov. 2019.  

• A. Faisal et al., “Deep reinforcement learning for RIS-assisted FD systems: Single or 
distributed RIS?,” IEEE Communications Letters, July 2022. 

• Y. Liu et al., “Deep-learning channel estimation for IRS-assisted integrated sensing 
and communication system,” IEEE Transactions on Vehicular Technology, Dec. 2022. 
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• Y. Kurzo, A. T. Kristensen, A. Burg, and A. Balatsoukas-Stimming, “Hardware Implementation of Neural Self-Interference Cancellation,” IEEE J. Emerg. Sel. Topics 
Circuits Syst., Jun. 2020.

Non-linearity 
Sources
• PA and LNA non-

idealities 
• IQ imbalance 
• Phase noise 
• Quantization 

noise

Self-Interference: Full-Duplex Transceiver Model
Propagation  DomainDigital Domain Analog Domain

DAC: digital-to-analog converter; LPF: low pass filter; VGA: variable gain amplifier;  
PA: power amplifier; BPF: band pass filter; LNA; low noise amplifier;  

ADC: analog-to-digital converter; LO: local oscillator. 

FD transceiver model with two stage cancellation techniques.



11

➢ Digital Canceler

Full-Duplex Transceiver Model

• The modeled SI signal is decomposed into: 

• Linear part: estimated using the 
conventional linear cancellation which is 
based on the least-square (LS) channel 
estimation 

• Non-linear part: approximated using  
machine learning, e.g., NN, SVR  

• Total cancellation: linear plus non-linear cancellation
Digital canceler.

•   
•   

•  



Existing NN-based SIC methods 
• Real-valued time delay neural network (RV-TDNN) 
• Recurrent neural network (RNN) 
• Complex-valued time delay neural network (CV-TDNN)

12
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• Real-valued TDNN (RV-TDNN)  

• Previously investigated for behavioral 
modelling of Pas 

• Also investigated in SIC problem 
• It can match the performance of the 

polynomial non-linear canceler with 
lower computational complexity

Recent NN-based SIC methods

• A. Balatsoukas-Stimming, “Non-linear digital self-interference cancellation for in-band full-duplex radios using neural networks,” in Proc. IEEE Int. Workshop 
Signal Process. Adv. Wireless Commun. (SPAWC), Jun. 2018.

RV- TDNN architecture.
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• Recurrent NN (RNN)  

• Connections pointing backward 

• Requires high training complexity, 
which makes it unpopular for 
real-time deployment

Recent NN-based SIC methods

RNN architecture.

(a) A recurrent neuron (left) unrolled through time (right)

(b) A layer of recurrent neurons (left) unrolled through time (right)

• A. T. Kristensen, A. Burg, and A. Balatsoukas-Stimming, “Advanced machine learning techniques for self-interference cancellation in full-duplex radios,” 
in Proc. Asilomar Conf. on Signals, Systems and Computers, Nov. 2019.
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• Complex-valued TDNN  
     (CV-TDNN) 

• Suitable candidate for SIC as it employs 
complex-valued inputs, which is the 
case in the signal processing in 
communication systems 

• CV-TDNN significantly reduces the 
number of network parameters 
without affecting the cancellation 
performance 

Recent NN-based SIC methods

CV-TDNN architecture.

• A. T. Kristensen, A. Burg and A. Balatsoukas-Stimming, “Advanced machine learning techniques for self-interference cancellation in full-duplex radios,”  
      in Proc. Asilomar Conf. on Signals, Systems and Computers, Nov. 2019.



➢ Dataset Specifications

16

Full-duplex testbed

Parameter Value
Type of modulation QPSK-modulated OFDM

Passband bandwidth 10 MHz
Number of carriers 1024

Sampling frequency 20 MHz
Average transmit power 10 dBm

Passive analog suppression 53 dB

Dataset size 20,480 samples

Achieved Results  

• A. T. Kristensen, A. Burg and A. Balatsoukas-Stimming, “Advanced machine learning techniques for self-interference cancellation in full-duplex radios,”  
in Proc. Asilomar Conf. on Signals, Systems and Computers, Nov. 2019.



➢ NN parameters 
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Parameter RV-TDNN RNN CV-TDNN 
Loss Function MSE MSE MSE

Activation Function ReLU Tanh CReLU
Optimizer Adam Adam Adam 

Learning Rate 0.005 0.0025 0.0045
Batch Size 22 158 62

Number of Epochs 50 50 50
Validation Split 0.1 0.1 0.1

Number of seeds 20 20 20
Mi 13 - 13

Simulation parameters of RV-TDNN, RNN, and CV-TDNN. 

Achieved Results  

ReLU: rectified linear unit;  CReLU: complex ReLU;  Adam: adaptive moment estimation; MSE: mean squared error. 

Note: The achieved results above and in the following slides are obtained using the public dataset available at https://
github.com/abalatsoukas/fdnn.

 Goal: achieve similar SIC as the polynomial canceler (P=5) with reduced complexity   

https://github.com/abalatsoukas/fdnn
https://github.com/abalatsoukas/fdnn
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Note: These are replicas of the MSE curves. 

Achieved Results  
➢Non-linear SIC ➢Total SIC



PSD curves for NN-based cancelers compared to the polynomial canceler (P = 5). 
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➢PSD performance 

Network Canc. 
(dB)

Gap to Noise 
Floor (dB)

RV-TDNN (18) 44.76 3.50

RNN (20) 44.94 3.21

CV-TDNN (7) 44.50 3.57

RV-TDNN (10-10-10) 44.73 3.48

RNN (16-16-16) 45.27 2.94

CV-TDNN (4-4-4) 44.63 3.73

• The SI signal is suppressed close to the Rx noise level 

Gap to noise floor.

Achieved Results  



➢ Complexity reduction compared to the polynomial model at P = 5

20

Network Structure SIC (dB) Total # Parameters Total # FLOPS % Parameters % FLOPs

Polynomial (P = 5) 44.45 312 1558 - -

RV-TDNN (18) 44.76 550 1156 +76.28% -25.80%

RNN (20) 44.94 528 1210 +69.23% -22.34%

CV-TDNN (7) 44.50 238 1166 -23.72% -25.16%

RV-TDNN (10-10-10) 44.73 538 1120 +72.44% -28.11%

RNN (16-16-16) 45.27 1420 3106 +355.13% +99.36%

CV-TDNN (4-4-4) 44.63 228 1106 -26.92% -29.01%

Note: Number of FLOPs = number of RV multiplications and 
           additions for linear and non-linear cancellations

Total SIC and complexity of different NN-based cancelers.

Achieved Results  

- A CV multiplication: 3 RV multiplications & 5 RV additions 
- A CV addition: 2 RV additions
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• RNN:  
• higher number of parameters than the polynomial based canceler 
• more training epochs to converge 

Conclusion

• RV-TDNN: 
• higher number of parameters than the polynomial based canceler 
• less training epochs to converge 

• CV-TDNN:  
• significantly reduces the number of FLOPs and parameters than the polynomial model 

• We conclude that: 

• RNN structures are not practical candidates for SIC 

• CV-TDNN can be a suitable candidate for SIC from the FLOPs and parameters reduction 
perspective



Idea 1: Grid-based NN Structures
• Design 1: Ladder-wise grid structure (LWGS) 

• Design 2: Moving-window grid structure (MWGS)

22
• M. Elsayed, A. A. A. El-Banna, O. A. Dobre, W. Shiu, and P. Wang, “Low complexity neural network structures for 

self-interference cancellation in full-duplex radio,” IEEE Commun. Lett., vol. 25, no. 1, pp. 181-185, Jan. 2021.
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• The fully-connected CV-TDNN can be represented using the grid topology

Overview of Grid-based Structures

Grid representation of the fully-connected CV-TDNN. 
Fully-connected CV-TDNN. 



Design 1: Ladder-Wise Grid Structure (LWGS) 24

LWGS (complete ladder). LWGS (shorter length of  ladder). 



Design 2: Moving-Window Grid Structure (MWGS) 25

• MWGS 
• The input samples learned by 

neurons are varied based on a fixed-
length moving window technique 

• All input samples are passed to the 
first neuron 

• The other neurons assist in learning 
the memory effect by considering 
the windowed data 

• Sliding the window over different 
samples allows to consider all 
buffered samples of the input signal

MWGS. 

Moving window procedure: recognized as an effective method for time series prediction 



Idea 2: Hybrid-Layers NN Structures
• Design 1: Hybrid convolutional-recurrent NN (HCRNN) 

• Design 2: Hybrid convolutional-recurrent-dense NN (HCRDNN)

26

• M. Elsayed, A. A. El-Banna, O. A. Dobre, W. Shiu, and P. Wang, “Hybrid-layers neural network architectures for 
modeling the self-interference in full-duplex systems,” IEEE Transactions on Vehicular Technology, vol. 71, issue 6, 
pp. 6291-6307, June 2022. 



27

Notes: - Recurrent layer: feedback connections from each neuron to all neurons  
           - I'

out (n) and Q' 
out (n) are the estimated I/Q components of the SI signal ySI,nl(n)  

HCRNN structure.

Design 1: Hybrid Convolutional Recurrent NN (HCRNN)

i i
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Example of three filters arrangement and reshaping layer.
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HCRDNN structure.

Design 2: Hybrid convolutional recurrent dense NN (HCRDNN)

i i



Idea 3: Dual-Neurons NN Structures
• RV-2HLNN structure 
• Idea of the proposed DN-ℓHLNN

30

• M. Elsayed, A. A. A. El-Banna, O. A. Dobre, W. Shiu, and P. Wang, “Full-duplex self-interference cancellation using 
dual-neurons neural networks,” IEEE Commun. Lett., vol. 26, no. 3, pp. 557-561, March 2022.



RV-2HLNN Structure 31

• An RV-FFNN known as a two-hidden 
layer NN (2HLNN) is introduced to 
model the non-linearity of memory-
based systems such as the Doherty 
RF PA. This is an RV NN 

• The RV-2HLNN is constructed based 
on behavioral modeling of the PA 
where delayed versions of the input 
and output samples are utilized as 
attributes to the input layer 

• It is worth mentioning that for the 
RF PA, the RV-2HLNN significantly 
outperforms the RV-TDNN 

• F. Mkadem and S. Boumaiza, “Physically inspired neural network model for RF power amplifier behavioral modeling and digital predistortion,” 
IEEE Trans. Microw. Theory Technol., Apr. 2011.

• Mi and Mo designate the memory depth attributed to the input and output signals, respectively

RV-2HLNN-based model for PA. 
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Idea of the Proposed DN-ℓHLNN 32

• The first hidden layer: 
• The input units are not fully connected 

• Uses two neurons to recognize the 
memory effect of the input and output 
signals separately, while reducing the 
required number of network’s parameters 
(e.g., weights and biases) 

• The activation functions are linear 
functions  

• The other hidden layers (i.e., 2nd,3rd, …, ℓth): 
• Approximate the non-linearity induced by 

the various components of the FD 
transceiver 

• The activation functions are non-linear 
functions

Proposed DN-ℓHLNN structure. 

• The dual neurons-ℓ hidden layers neural network  
(DN-ℓHLNN) employs the CV framework



Achieved Results

33
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Parameter 
Value 

RV structures CV structures
Loss function MSE MSE

Learning rate 0.005 0.0045

Batch size 62 62

Activation function ReLU Complex-ReLU

Optimizer Adam Adam 

Number of epochs 50 50

Validation split 0.1 0.1

Number of seeds 15 15

Achieved Results  

NN model parameters.

Notes: - HCRDNN 1 and HCRDNN 2 are trained using a 158 batch size. 
              - The achieved results are obtained using the public dataset available at https://github.com/abalatsoukas/fdnn.

• Optimum settings for training the NN architectures based on hyperparameter tuning

https://github.com/abalatsoukas/fdnn
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Structure CV-TDNN LWGS MWGS HCRNN HCRDNN 1 HCRDNN 2

# Neurons in the 
hidden layer

7 9 12

Window size 5

# Filters 3 2 3

Filter size  12×1×1 12×1×1 12×1×1

# Rec. neurons 9 7 5

# Dense neurons 11 12

Other parameters for the NN models.

Note: These structures achieve a similar SIC performance with reduced computational complexity 
           (from each of the proposed NN structures)

Achieved Results  



PSD curves for the best NN candidates compared to the polynomial canceler (P = 5). 
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➢ PSD performance 
Achieved Results  

Network Canc. (dB) Gap to noise 
floor (dB)

RV-2HLNN (4-9) 44.50 3.56
CV-TDNN (7) 44.50 3.54

CV-2HLNN (2-7) 44.58 3.45
LWGS (9) 44.48 3.57

MWGS (12,5) 44.40 3.64
HCRNN 44.50 3.55

HCRDNN 1 44.44 3.61
HCRDNN 2 44.41 3.64

DN-2HLNN (2-6) 44.44 3.60
DN-2HLNN (2-7) 44.50 3.54
CV-TDNN (4-4-4) 44.63 3.41
CV-3HLNN (2-4-5) 44.57 3.46
DN-3HLNN (2-4-5) 44.51 3.52

Gap to noise floor for the of the  
best NN candidates.
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Canceler  
type Network

Total 
averag
e SIC 
(dB)

Linear 
SIC 
(dB)

Non-
linear 

SIC 
(dB)

Gap to 
Rx 

Noise 
Floor 
(dB)

Linear Canceler 
Complexity

NN Model 
Complexity

Total 
Complexity

Complexity 
Reduction to 

Polynomial (P=5)

# Par. # 
FLOPS # Par. # 

FLOPS # Par. # 
FLOPS # Par. # 

FLOPS
Baseline Polynomial (P=5)  44.45

 37.86

6.59 3.61 

26 128

- - 312 1558 - -

Real-valued NN

RV-2HLNN (4-9) 44.50 6.64 3.56 269 517
295 647 -5.45%

-58.47
%

HCRNN 44.50 6.64 3.54 203 615 229
745 -26.60%

-52.18
%

HCRDNN 1 44.58 6.72 3.45 222 570
248  700 -20.51%

-55.07
%

HCRDNN 2 44.48 6.62 3.57 197 595
 223 725 -28.53%

-53.47
%

CV-TDNN (7) 44.40 6.54 3.64 212 1036
238  1166 -23.72%

-25.16
%

CV-2HLNN (2-7) 44.50 6.64 3.55 162 766
188 896 -39.74%

-42.49
%

LWGS (9) 44.44 6.58 3.61 136 652
162 782 -48.08%

-49.81
%

MWGS (12,5) 44.41 6.55 3.64 186 896
212 1026 -32.05%

-34.15
%

Total SIC of different NN-based cancelers (dataset #1).

SUMMARY of RESULTS (Dataset #1)
• Results with the public dataset (https://github.com/abalatsoukas/fdnn)

Note: Results are compared to polynomial canceler with P = 5, which requires 1558 FLOPs and 312 parameters to achieve same cancellation. 

https://github.com/abalatsoukas/fdnn
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Total SIC of different NN-based cancelers (dataset #2).

Canceler  
type Network

Total 
average 
SIC (dB)

Linear 
SIC (dB)

Non-linear 
SIC (dB)

Gap to Rx 
Noise 

Floor (dB)

Linear Canceler 
Complexity

NN Model 
Complexity

Total 
Complexity

Complexity 
Reduction to 

Polynomial (P=5)

# Par. # 
FLOPS # Par. # 

FLOPS # Par. # 
FLOPS # Par. # 

FLOPS
Baseline Polynomial (P=5) 30.40

19.11

11.29  11.67

26 128

- - 312 1558 - -

Real-valued NN

RV-2HLNN (4-9) 33.73 14.62 8.34 269 517
295 647 -5.45%

-58.47
%

HCRNN 33.87 14.77 8.20 203 615 229
745 -26.60%

-52.18
%

HCRDNN 1 33.94 14.84 8.13 222 570
248  700 -20.51%

-55.07
%

HCRDNN 2 34.07 14.96 8.00 197 595
 223 725 -28.53%

-53.47
%

CV-TDNN (7) 34.09 14.98 7.98 212 1036
238  1166 -23.72%

-25.16
%

CV-2HLNN (2-7) 35.56 16.46 6.51 162 766
188 896 -39.74%

-42.49
%

LWGS (9) 30.89 11.79 11.18 136 652
162 782 -48.08%

-49.81
%

MWGS (12,5) 34.47 15.36
7.61

186 896
212 1026 -32.05%

-34.15
%

SUMMARY of RESULTS (Dataset #2)

In the following slides, we will drop the CV from the CV-2HLNN, CV-3HLNN, etc. structures for the ease of notation.

• Results with a second public dataset (https://github.com/abalatsoukas/CSI-full-duplex.  
      Average transmit power is 32 dBm (instead of 10 dBm in the first dataset) and sampling rate is 4FN (instead of 2FN). 

• F. Jochems and A. Balatsoukas-Stimming, "Non-Linear Self-Interference Cancellation via Tensor Completion," in Proc. Asilomar Conference on Signals, Systems and Computers, 2020.

https://github.com/abalatsoukas/CSI-full-duplex


Summary (full data set used for training)
• Polynomial model for SIC 

• Can be accurate for representing the SI  
• Requires high computational complexity 

• NN-based SIC: Model-Centric Approach: appealing tool to model the SI with lower computational 
complexity 
• RV-TDNN: lower complexity than the polynomial model 
• RNN: not a practical candidate for SIC 
• CV-TDNN: reduces the number of FLOPs & parameters compared to the polynomial model 
• Our proposed solutions  further reduce the complexity 

• Using the public datasets  
• Superiority of proposed NN structures vs. polynomial and the existing NN-based cancelers in terms of complexity 
• DN-2HLNN: lowest complexity and provides about 60% reduction in the number of network parameters and FLOPs 

over the polynomial-based canceler 
• Some structures trained for dataset #1 perform reasonably well when applied to dataset #2  
    (change in the scenario)

39

Training:  with 20,480 samples. What about if the channel changes and we need to train again?    



Support Vector Regressor (SVR)-based SIC

40



SVM for regression (SVR).

41Motivation

• NNs can succumb to various problems, such as: 
• expensive training cost 
• poor generalization, especially when few examples are 

available for training 

• Support vector machines are generally very fast to train:  
• use only a subset of a dataset as training data 
• particularly well suited for problems of complex but 

small- or medium-sized datasets  

• Main objective: 
• employ the SVR to model the non-linear SI components 

in operating scenarios where few data samples are 
available for training  

• A. Géron, Hands-on Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. Sebastopol, CA, USA: O’Reilly, 2017.



42Motivation

• A. Géron, Hands-on Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. Sebastopol, CA, 
USA: O’Reilly, 2017.

SVR 
Objective: consider the points that are within 
the decision boundary lines 
The best-fit line is the hyperplane that has a 
maximum number of points 

Linear SVR:  
Employs a linear kernel 

Non-linear SVR:  
Employs a non-linear kernel (e.g., RBF) 

SVR optimization problem: 
Solved using the method of Lagrange multipliers 

Slack variables are introduced to guarantee that the 
optimization problem is feasible Linear and non-linear SVRs.



SVR-based full-duplex system model 43

• A least-squares (LS)-based linear canceler: used to estimate the linear part of the SI signal  
• SVR-based non-linear canceler: used to estimate the non-linear part of the SI signal   

FD system model with linear and non-linear digital cancellation stages.



Proposed Output-feedback Time-delay SVR (OF-TDSVR)
44

• The input and output samples are utilized as 
features for training 

• Specifically, the OF-TDSVR is fed by the real 
and imaginary parts of:  
• the current and past samples (Mi) of the 

input signal 
• past output samples (Mo) after applying 

the linear cancellation stage  

• This can improve the learning capabilities of 
the OF-TDSVR and enhance its SIC compared 
to the SVR literature benchmarks Proposed OF-TDSVR non-linear based canceler.

Note: Similar to the existing residual TDSVR (RTDSVR), the proposed OF-TDSVR also follows a residual scheme, where the non-linear 
cancellation is applied over the residual SI after performing the linear cancellation.
• M. Yilan, O. Gurbuz, and H. Ozkan, “Integrated linear and nonlinear digital cancellation for full duplex communication,” IEEE Wireless Communications, Feb. 2021.



Achieved Results  

45

• Datasets #1 and #2 

• For a certain number of training sequence, find the peak 
performance (i.e., maximum SIC) 

• Benchmarks: Tensor Completion & Deep Unfolding methods 
• F. Jochems and A. Balatsoukas-Stimming, “Non-linear self-interference cancellation via tensor completion,”  

in Proc. Asilomar Conf. Signals, Syst., Comput., Nov. 2020, pp. 905–909. 
• A. T. Kristensen, A. Burg, and A. Balatsoukas-Stimming, “Identification of non-linear RF systems using 

backpropagation,” in Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops), June 2020, pp. 1–6.



46Achieved Results  
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 #
1

Training time of different ML-based approaches compared to the polynomial-
based canceler at various dataset sizes (public dataset #1). 

Achieved SIC by different ML-based approaches compared to the polynomial-
based canceler at various dataset sizes (public dataset #1). 

SIC Performance Training time

RV-TDNN: real-valued time delay NN; DN-2HLNN: dual-neurons two-hidden layers NN; RTDSVR: residual time-delay SVR; 
 OF-TDSVR: output-feedback time-delay SVR; TC: tensor completion; DU: deep unfolding.
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Total parameters of different ML-based approaches compared to the 
polynomial-based canceler at various dataset sizes (public dataset #1). 

Memory storage

RV-TDNN: real-valued time delay NN; DN-2HLNN: dual-neurons two-hidden layers NN; RTDSVR: residual time-delay SVR; 
 OF-TDSVR: output-feedback time-delay SVR; TC: tensor completion; DU: deep unfolding.

Total FLOPs of different ML-based approaches compared to the 
polynomial-based canceler at various dataset sizes (public dataset 

#1). 

Computational complexity  
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Achieved Results  

Training time of different ML-based approaches compared to the polynomial-
based canceler at various dataset sizes (public dataset #2). 
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SIC Performance 

Achieved SIC by different ML-based approaches compared to the polynomial-
based canceler at various dataset sizes (public dataset #2). 

Training time

RV-TDNN: real-valued time delay NN; DN-2HLNN: dual-neurons two-hidden layers NN; RTDSVR: residual time-delay SVR; 
 OF-TDSVR: output-feedback time-delay SVR; TC: tensor completion; DU: deep unfolding.
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Total parameters of different ML-based approaches compared to the 
polynomial-based canceler at various dataset sizes (public dataset #2). 

Memory storage

Total FLOPs of different ML-based approaches compared to the polynomial-
based canceler at various dataset sizes (public dataset #2). 

Computational complexity  

RV-TDNN: real-valued time delay NN; DN-2HLNN: dual-neurons two-hidden layers NN; RTDSVR: residual time-delay SVR; 
 OF-TDSVR: output-feedback time-delay SVR; TC: tensor completion; DU: deep unfolding.
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Performance Comparison

•     : SIC achieved over a certain dataset with a particular 
average transmit power 

•                            :  maximum and minimum SIC 
•     : training time  
•                          : maximum and minimum training time 
•     :  number of parameters  
•                              : maximum and minimum number of 

parameters  
•     : number of FLOPs  
•                           : maximum and minimum FLOPs

          ,           ,               and                are assigned to either 0 or 1 depending on the application requirements 

- Canceler Efficiency

• Efficiency: η based on achieved SIC, fitting time, memory storage, and FLOPs
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RV-TDNN: real-valued time delay NN; RNN: recurrent NN; CV-TDNN: complex-valued time-delay NN; 2HLNN: two-hidden layers NN;  
DN-2HLNN: dual-neurons two-hidden layers NN;  RTDSVR: residual time-delay SVR; OF-TDSVR: output-feedback time-delay SVR; TC: tensor completion; DU: deep unfolding.

Datas
et 

Size 
Test case

Poly.
RV-
TDN

N
RNN

CV-
TDNN

2HL
NN

DN-2
HLN

N

OF-
TDS
VR

TC DU

2000

1 0 0 0 SIC is the only 
system demand.

✓
3000 ✓
4000 ✓
5000 ✓
2000

1 1 0 0

SIC and training 
time are the 
only system 
demands.

✓
3000 ✓
4000 ✓
5000 ✓
2000

1 0 1 0

SIC and memory 
are the only 

system 
demands.

✓
3000 ✓
4000 ✓
5000 ✓
2000

1 0 0 1

SIC and 
complexity are 
the only system 

demands.

✓
3000 ✓
4000 ✓
5000 ✓

Datas
et 

Size 
Test case

Poly.
RV-
TDN

N
RNN

CV-
TDNN

2HL
NN

DN-2
HLN

N

OF-
TDS
VR

TC DU

2000

1 1 1 0

SIC, training 
time, and 

memory are the 
only system 
demands.

✓
3000 ✓
4000 ✓
5000 ✓
2000

1 1 0 1

SIC, training 
time, and 

complexity are 
the only system 

demands.

✓
3000 ✓
4000 ✓
5000 ✓
2000

1 0 1 1

SIC, memory, 
and complexity 

are the only 
system 

demands.

✓
3000 ✓
4000 ✓
5000 ✓
2000

1 1 1 1

SIC, training 
time, memory, 
and complexity 
are all system 

demands.

✓
3000 ✓
4000 ✓
5000 ✓

- Canceler Efficiency
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RV-TDNN: real-valued time delay NN; RNN: recurrent NN; CV-TDNN: complex-valued time-delay NN; 2HLNN: two-hidden layers NN;  
DN-2HLNN: dual-neurons two-hidden layers NN;  RTDSVR: residual time-delay SVR; OF-TDSVR: output-feedback time-delay SVR; TC: tensor completion; DU: deep unfolding.

Datas
et 
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Test case
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TDN
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CV-
TDNN

2HL
NN
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HLN
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TC DU

2000

1 0 0 0 SIC is the only 
system demand.

✓
3000 ✓
4000 ✓
5000 ✓
2000

1 1 0 0

SIC and training 
time are the 
only system 
demands.

✓
3000 ✓
4000 ✓
5000 ✓
2000

1 0 1 0

SIC and memory 
are the only 

system 
demands.

✓
3000 ✓
4000 ✓
5000 ✓
2000

1 0 0 1

SIC and 
complexity are 
the only system 

demands.

✓
3000 ✓
4000 ✓
5000 ✓
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4000 ✓
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1 1 0 1

SIC, training 
time, and 
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3000 ✓
4000 ✓
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SIC, memory, 
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are the only 
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3000 ✓
4000 ✓
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SIC, training 
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and complexity 
are all system 
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✓
3000 ✓
4000 ✓
5000 ✓

- Canceler Efficiency
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Conclusion for dataset #1  
Promising Solutions: 

• Polynomial-based canceler: highest SIC with the lowest training time 

• DU-based canceler: requires the lowest number of parameters and FLOPs,                            
albeit at the cost of reduced SIC and increased training time

Summary (reduced data set for training)

Conclusion for dataset #2  
Promising Solutions: 
• RV-TDNN-based canceler: highest SIC with reasonable memory storage and   

      computational complexity 
• DU/TU-based canceler: requires the lowest number of parameters/FLOPs,   

  albeit at the cost of reduced SIC and increased training time 
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Conclusion: full data set used for training 
         NN-based SIC: Model-Centric Approach 

• DN-2HLNN: lowest complexity and provides about 60% reduction in the number of network parameters 
and FLOPs over the polynomial-based canceler 

• When trained for dataset #1, it performs reasonably well when applied to dataset #2  

Conclusion

Conclusion: reduced data set used for training 
      Model-Centric Approach 

• Higher power level: RV-TDNN-based canceler: highest SIC with reasonable memory storage and 
computational complexity 

• Lower power level: polynomial canceler: highest SIC with the lowest training time 



55ONGOING AND FUTURE WORK

• Train and test solutions for various parameters: modulation formats, powers, sampling frequencies 

• Follow a data-centric approach: input/output data samples are captured before/after the DAC/ADC 

• Online learning and extreme learning machine: performance-complexity-training time to adapt to changes 

• Generalization: out of distrbution generalization/model generalization 

• Study when using the signal-of-interest (SoI) & what if the SoI uses frequency domain modulation formats? 

• Extension to multiple-input multiple-output (MIMO) case: complexity linearly increases under MIMO 
        operation

Full Duplex Communications – Network 

• Interference-limited scenario: beamforming, scheduling, multiple access, resource allocation 

• Integrated sensing and communication (ISAC): channels estimation, interference-limited communications

Machine Learning-based Self-interference Cancellation 


