
 

 

 

Abstract— Many spectrum sensing techniques have been 

proposed in the literature to enable cognitive radio technology. 

However, their reliability when primary users have very low 

signal-to-noise ratio (SNR) in the presence of noise uncertainty 

remains a challenging problem. This paper focuses on detecting 

wireless microphone signals in the presence of noise uncertainty. 

Power Spectrum Density (PSD)-based sensing has been proposed 

in the literature as the best sensing algorithm for wireless 

microphones. However, when there is noise uncertainty, PSD-

based sensing performance is severely degraded. To solve this 

problem, eignevalues-based blind sensing, which does not need 

noise information, have been proposed. In this paper, we present 

a new adaptive spectrum sensing algorithm that outperforms 

both PSD-based sensing and the eigenvalues-based sensing in the 

presence of noise uncertainty. The algorithm combines the 

decisions of the two algorithms, and then, adapts the decision 

threshold required for the PSD-based sensing in an iterative way. 

Simulation results show that the proposed spectrum sensing 

algorithm outperforms the PSD-based sensing in the presence of 

1 dB noise uncertainty by more than 2 dBs. At the same level of 

noise uncertainty, our algorithm outperforms the eigenvalue-

based sensing by 1.2 dBs. 

 

Keywords-cognitive radio; spectrum sensing; noise 

uncertainty; wireless microphones. 

I. INTRODUCTION 

 Cognitive Radio (CR) technology has been first proposed 

by the USA Federal Communications Commission (FCC) to 

enable opportunistic spectrum sharing. It has provided a 

convenient solution to the problem of scarcity of the wireless 

spectrum and low spectrum usage efficiency. As a 

consequence, IEEE 802 standards committee established a 

working group named IEEE 802.22, also called WRAN 

Group, to develop a standard for a cognitive radio based 

PHY/MAC/air interface for use by unlicensed devices in the 

Digital TV white space (DTV) broadcast spectrum [1]. TV 

white space spectrum is considered prime real estate because 

its signals travel well, making it ideally suited for mobile 

wireless devices. 

 

  The basic idea of a cognitive radio is spectrum sharing, 

which allows secondary users to communicate over the 

spectrum allocated to primary users when they are not fully 

utilizing it. The operation of cognitive radio devices should be 

on a non-interfering basis in the spectrum that has already 

been allocated to the primary users, thus protecting the 

primary user’s network functionalities. The FCC has taken 

steps to ensure that, including issuing a report on September 

23rd, 2010 that reserves two vacant UHF channels for wireless 

microphones and other low power auxiliary service devices in 

all areas of the country. Wireless microphones are licensed 

devices operating in the DTV bands. The problem is that 

wireless microphones are more susceptible to interference by 

CR devices compared to DTV receivers; due to their lower 

transmit power (in the range of 10 mW). Therefore, the main 

task in spectrum sensing for IEEE 802.22 WRAN is to detect 

the existence of the DTV signal as well as wireless 

microphone signals that maybe operating in the DTV bands. 

 

 Many spectrum sensing methods have been proposed in the 

literature [3]-[9]. These sensing methods can be classified into 

three categories: (A) methods requiring both source signal and 

noise power information, (B) methods requiring only noise 

power information (semi-blind detection), and (C) methods 

requiring no information on source signal or noise power 

(totally blind detection). For example, likelihood ratio test [3], 

Matched Filter  [4], and cyclo-stationary detection  [5] belong 

to category (A); energy detection [6] and wavelet-based 

sensing methods [7] belong to category (B); eigenvalue-based 

sensing [8], covariance-based sensing [9], and blindly 

combined energy detection [6] belong to category (C). 

  

 The PSD-based sensing algorithm presented in [11] belongs 

to category (A) and it outperforms all other spectrum sensing 

algorithms when the receiver can estimate the true value of the 

noise power, as will be shown in section IV. However, in 

reality for the reasons mentioned in [9], the value of the 

estimated noise power is different than the true noise power. 

When the PSD-based sensing algorithm uses a wrong estimate 

of the noise power, its performance is highly degraded. And 

here comes the advantage of blind algorithms of category (C) 

which do not require any prior knowledge of the noise level in 

the system. Among these blind techniques, the eigenvalue-

based sensing [8] provides the best performance and is most 

suitable to be used with wireless microphones in the presence 

of noise uncertainty. 

  

 In this paper, we propose a novel adaptive sensing 

algorithm that exploits the advantages of both the PSD-based 

sensing and the eigenvalue-based sensing, where the blind 
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eigenvalue-based sensing algorithm is used to guide the PSD-

based decision to overcome the effect of noise uncertainty. 

Our results show that the proposed algorithm outperforms 

both algorithms, and therefore, provides a reliable operation in 

noise varying environments. 

 

 The rest of the paper is organized as follows. Section II will 

compare between the PSD-based sensing algorithm and the 

eigenvalue-based sensing. Section III will present the 

proposed algorithm that combines these two algorithms. 

Section IV presents the simulation results. Finally, section V 

concludes the paper. 

II. PSD AND EIGENVALUE BASED SENSING ALGORITHMS 

A. Spectrum sensing using power spectral density: 

 Spectrum sensing using PSD [11] makes use of the fact that 

wireless microphone devices use analog frequency modulation 

(FM), with a bandwidth less than 200 KHz. The power of the 

WM signal is highly concentrated in the frequency domain, 

and there are a many apparent peaks in its PSD [12]. Using 

this property, the power spectral density of the received FM 

signal can be easily estimated, and its maximum value, is used 

as the decision statistic. 

 

Wireless microphone signal is modeled by a sinusoidal 

signal that FM modulates a carrier signal, with a transmit 

power of 10 mW. The carrier frequency and FM deviation 

factor are chosen to model the WM signal in three cases: 

1. Silence: that is the case when the wireless microphone is 

switched ON but the microphone user is silent. In this 

situation, the FM deviation factor is small. 

2. Soft speaker : when the speaker speaks in a soft voice, the 

frequency deviation factor is medium. 

3. Loud speaker: when the microphone user speaks in a loud 

voice, the frequency deviation factor is large. 

 

 
Fig. 1 . Performance of the WM spectrum sensing using PSD, at PFA =0.1 

and sensing time = 10 ms. 

The PSD-based sensing algorithm divides the signal’s 

frequency domain into M windows each of size N samples, 

and finds the PSD in each band. The maximum value of all the 

bands is taken as a decision statistic and is compared to a 

certain threshold λPSD to decide the signal presence. This 

decision threshold is derived as a function of the probability of 

false alarm PFA and estimated noise power as follows: ���� = �� + √��. ��
 �1 − �1 − �������                �1� � is given by: 

� = ���
�� − 1���� 

where �� is the sampling period. 

  

 The performance of the algorithm is shown in Fig. 1 for the 

three types of speakers, where PMD is the probability of miss 

detection. The performance is evaluated at PFA=0.1, which is 

the maximum acceptable PFA  in the 802.22 standard. This is 

considered the best performance among all sensing algorithms 

in [3]-[9]. Note that the performance of the algorithm in case 

of silent speaker is better than the soft and loud speakers, 

because the spectrum is more concentrated in the first case 

than the two other cases. 

 

It can be shown that the probability of false alarm achieved 

by this method is given by: 

��� = 1 − �1 − �  � − ��√� ∗ ��"#$                       �2� 

And the probability of detection is: 

�� = 1 −
&'
'(1 − �

)
*� − �� − ��� �� − 1���+ �

,� ∗ �� + �- Δ/+ � 0
1

23
34
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where Δf is the FM deviation factor and μ is a constant value 

depending on the signal power.   

  

 However, the dependency on accurate estimation of the 

noise power (through � in (1)) is a drawback. As in practice, 

there is always noise uncertainty, where the estimated noise 

power is different than the true noise power by a factor 8.  �9:� = 8�:� 

 

It is assumed that α in dB is uniformly distributed in an 

interval [−B, B]. Where B is known as the noise uncertainty 

bound [14]. Practical values of the noise uncertainty bound are 

between 1 dB and 2 dB. 

  

It can be easily shown that the probability density function 

of 8 is given by [13]: 

/;�8� = < 5ln�10� ∗ A ∗ 8    10�B/
D < 8 < 10B/
D
0                       FGℎIJKLMI N        �4� 

 

And hence the average ���and �� can be obtained by 

averaging (2) and (3) over the noise uncertainty factor in (4): ���PPPPP = 

Q R1 − �1 − �  � − ��√� ∗ ��"#$S
D T�U

DVT�U ∗ 5ln�10� ∗ A ∗ 8 W8       �5� 
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Fig. 2. ROC curve of the PSD sensing algorithm at SNR = -25dB, sensing 

time 10 ms, for loud speaker. 

Using equations (5) and (6), we get the ROC (receiver 

operating characteristics) curves at different noise uncertainty 

values as shown in Fig. 2. In Fig.2, PSD-x dB means that the 

noise uncertainty level is x dB.  As can be seen from the 

curve, the performance is severely degraded in the presence of 

noise uncertainty, and this degradation increases with the 

increase in the level of noise uncertainty. For a certain 

threshold λZ[\  in (1) set to achieve a specific ���, the 

resulting ���PPPPP is larger than what was intended to be achieved 

when choosing λZ[\, and the ��PPP is less than the target  ��. 

Moreover, noise uncertainty leads to formation of SNR walls. 

That is to say, for a given noise uncertainty bound B, there is a 

minimum SNR value below which we cannot achieve the 

required ��� and ��using the PSD sensing algorithm; even if 

sensing time tends to ∞ [13]. As we will show in section III, 

this effect can be alleviated by using one of the blind sensing 

algorithms to guide the PSD algorithm threshold in an iterative 

way.  

B. Eigenvalue based detection: 

 Eigenvalue based detection [9] provides the best 

performance among all blind algorithms in case of wireless 

microphone signal detection [1]. The algorithm exploits the 

fact that the WM source signal has narrow bandwidth (200 

kHz compared to 6 MHz of TV channels), and therefore, its 

samples are highly correlated. This is in contrast to the noise 

signal, which is a white random signal. Therefore, it has zero 

correlation between different samples. 

 The algorithm is based on estimating the covariance matrix 

of the transmitted signal from the received samples. First, the 

received samples are upsampled by a factor M. Then an 

estimation of the covariance matrix based on L consecutive 

symbols, which corresponds to (M L) received samples, is 

used to estimate the covariance matrix. An eigenvalue 

decomposition of the estimated covariance matrix is 

performed and the ratio between the maximum eigenvalue to 

the minimum eigenvalue is used as a decision statistic. That is 

why the algorithm is named maximum to minimum 

eigenvalue sensing algorithm (MME). The decision statistic is 

compared to a threshold that depends on the target probability 

of false alarm and does not depend on the. It has been shown 

in [10] that, as L increases, the estimated covariance matrix 

becomes more accurate. However the system complexity 

increases as well. A method to find the optimal L is given in 

[9]. The main advantage of this algorithm is that it is blind. 

The decision threshold depends only on the target probability 

of false alarm, and not on an estimation of the noise power. 

The decision statistic also does not depend on the noise power.  

 Note that the main idea of this algorithm is that the noise 

samples are assumed to be white i.i.d. random signal, so a pre-

whitening process must be used prior to signal detection. 

Numerical results that show the performance of the MME 

algorithm compared to the PSD-based algorithm are shown in 

section IV. 

III. THE PROPOSED ADAPTIVE ALGORITHM 

Although the PSD based sensing is the best sensing 

algorithm to detect the existence of wireless microphone 

signals, its performance is severely degraded in the presence 

of noise uncertainty, as has been shown in Fig. 2. The main 

reason for this performance degradation is that the decision 

threshold ����  in (1) was chosen as a function of the true 

value of the noise power. However, as has been shown in [14], 

the estimated value of the noise power is different than the 

true value of the noise power. In this section, we propose a 

novel adaptive algorithm that uses the MME blind estimator to 

guide the selection of the decision threshold ����in the PSD 

technique when noise uncertainty exists. We show that this 

algorithm is superior in performance to both PSD and MME 

algorithms. We start by listing the steps of the proposed 

algorithm and follow by a description for its operation. 

Algorithm 1: 

1. Estimate the noise power, set iteration number i=1 

Calculate the PSD method decision threshold ���� 

based on the required ��� using the estimated noise 

power using equation (1). 

2. Take decision D-PSD based on the decision threshold ����  to determine if a packet has been detected or not. 

3. Take decision D-MME based on the eignenvalues of 

the covariance matrix of the signal. 

4. Combine D-PSD and D-MME based on Table 1.  

5. i=i+1;  If i >= num_iterations Goto 1, else continue 

6. Based on the combined decision in step 4, if a packet 

has been detected, increase ����according to (7), 

otherwise, decrease ����according to (8) 

7. Goto step 2 
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Table 1: Combined decision based on PSD and MME algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3. Flow chart for the proposed adaptive algorithm. 

 The flow chart in Fig. 3 describes the steps of the proposed 

algorithm. The algorithm starts by calculating an estimate of 

the noise power to be used by the PSD spectrum sensing 

algorithm. In practice, as have been highlighted in [14], this 

noise estimate is not accurate. The noise estimate is used, 

along with the required PFA, which is a system requirement, to 

estimate ���� that will be used by the PSD spectrum sensing 

algorithm described in section II-A. The PSD sensing uses ���� to take a decision concerning the existence of the PU in 

step 2. We call this decision (D-PSD). At the same time, in 

step 3, the covariance matrix of the received samples will be 

calculated and a decision based on the MME algorithm will be 

taken. We call this decision (D-MME).  

In step 4, the decisions from the two sensing algorithms are 

combined based on table 1. Since the MME algorithm is blind, 

its performance is much worse than the performance of the 

PSD-based algorithm if the true noise information is available 

at the receiver (as we will show in section IV). Consequently, 

we will mainly consider the decision of the PSD-based 

algorithm in table 1, and use the MME decision as a feedback 

to adjust the value of ���� . However, if MME detected a 

signal while PSD not (which is the last case in Table 1), that 

means that the noise power estimated was much larger than 

the true noise power value such that MME was able to detect 

the signal presence while PSD cannot. Therefore, we consider 

that a signal is detected. 

In step 2, because the PSD threshold was based on an 

estimation of the noise power, and not the true value of the 

noise power, we will update this threshold to be used in the 

detection in the next iterations. Whenever the PSD algorithm 

detects a signal, while MME cannot (second case in Table 1), 

then there are two possibilities: 

a) It can be an indication that the estimated noise power, and 

hence the calculated ���� , is less than the actual value. Then 

we need to increase the value of ���� .  

b) The MME was unable to detect the signal because its PD is 

low at that SNR.  

Accordingly, ����  increases in the next iteration by a value 

that varies directly with the PD of the MME algorithm at the 

estimated SNR, which can be determined by an offline 

simulation and stored in a lookup table. Therefore, the value 

1/�1 − ��� acts as a ratio that weights the decision of the 

MME algorithm and indicates the amount of trust we should 

give for. The update equation of ����  in this case is: 

���� = ���� 11 − ��                   �7� 

 

Similarly, if MME detected a signal while PSD could not 

(case four in Table 1), there are two possibilities: 

a) It can be because the estimated noise power and ����  are 

larger than the actual value.  

b) It can be just a false alarm from the MME algorithm.  

Consequently, we need to decrease ����, but as before, the 

amount of decreasing ����  should be in proportion to the PFA 

value of the MME algorithm at the estimated SNR. The update 

equation of ����  is given by:                          ���� = ���� ∗ ���                     �8�  
Updating ����  takes place in step 6. Adjusting ��`a continues 

for num_iterations iterations, and then the receiver estimates a 

new value of noise power. 

IV. SIMULATIONS AND RESULTS 

The proposed algorithm was tested in a typical PU sensing 

scenario, where the sensing interval was set to 10 ms. Fig.5 

shows the probability of miss detection (PMD) at different 

SNRs when the target PFA = 0.1, which is the maximum 

acceptable by the 802.22 standard. The noise power 

uncertainty B in (4) is 1 dB. When true noise information is 

available, PSD based sensing outperforms MME based 

sensing by 3dB as shown in Fig.4. However, when the 

estimated noise is different than the true noise information, the 
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performance of the PSD-based sensing becomes worse than 

the MME performance. This is emphasized in Fig. 6 for noise 

uncertainty of 2 dB.  It is clear from Fig. 5 that the proposed 

algorithm is better than both PSD and MME based sensing. 

The results for one iteration show the validity of the decision 

fusion logic in table 1. Even for one iteration, the performance 

of the proposed algorithm is better than PSD and MME 

algorithms. As the number of iterations increase, the 

performance gets better. Fig.5 shows that going from three 

iterations to four iterations will not provide a significant gain. 

Fig.7 shows the ROC curve at a very low SNR (-25dB). 

Increasing the number of iterations will enhance the ROC 

curve of the system at all values of PFA and PD. Fig.6 shows 

also that the proposed algorithm outperforms the PSD sensing 

when noise uncertainty exists at all values of PFA and PD. 

Fig. 4. Comparison between MME and PSD based sensing for PFA =0.1 

Fig. 5. Performance of different techniques with B=1dB at PFA =0.1. 

 
Fig. 6. Performance of different techniques with B=2dB at PFA =0.1. 

 
Fig. 7. ROC curve of the PSD, PSD with 1 dB noise uncertainty bound, and 

the proposed algorithm, for loud speaker at SNR -25 dB, 10 ms sensing time. 

V. CONCLUSION 

In this paper, we have introduced a new adaptive spectrum 

sensing algorithm to detect the existence of wireless 

microphone devices when true noise power is not available. 

The algorithm combines the decisions of the power spectrum 

density spectrum sensing and the eigenvalue-based sensing. 

Moreover, the power spectrum density decision threshold is 

adapted in an iterative way to mitigate the effect of noise 

uncertainty. Simulation results show that our algorithm 

outperforms both algorithms in the presence of noise 

uncertainty.  
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