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ABSTRACT

Compressed sensing enables the acquisition of sparse signals

at a rate that is much lower than the Nyquist rate. Various

greedy recovery algorithms have been proposed to achieve a

lower computational complexity compared to the optimal �1
minimization, while maintaining a good reconstruction accu-

racy. We propose a new greedy recovery algorithm for com-

pressed sensing, called the Adaptive Reduced-set Matching

Pursuit (ARMP). Our algorithm achieves higher reconstruc-

tion accuracy at a significantly low computational complex-

ity compared to existing greedy recovery algorithms. It is

even superior to �1 minimization in terms of the normalized

time-error product, a metric that we introduced to measure the

trade-off between the reconstruction time and error.

Index Terms— compressed sensing, matching pursuit,

sparse signal reconstruction, restricted isometry property

1. INTRODUCTION

Traditionally, a signal is sampled at least at the Nyquist rate,

which is double the signal bandwidth, for perfect reconstruc-

tion. On one hand, the Nyquist rate of some applications is so

high that it is too expensive or even impossible to implement

[1]. On the other hand, many applications compress the sam-

pled signal for efficient storage purposes or for transmission

over a much limited bandwidth. For example, a digital cam-

era has millions of imaging sensors, but the acquired image

is usually compressed into a few hundred kilobytes. Thus, a

significant amount of the acquired data – the least significant

information content – is sacrificed [2].

Compressed sensing simultaneously performs sensing

and compression, thus the signal is sensed in a compressed

form [1, 2, 3, 4]. This results in a considerable reduction

in the costs of sampling and computation. The signal to be

acquired should be either sparse or compressible, i.e. it has a

few significant coefficients in a suitable basis or domain (e.g.

Fourier, Wavelets, . . . , etc.). This includes a large variety

of signals such as natural images, videos, MRI, and radar

signals [5]. The original signal can be recovered by convex

optimization or greedy recovery algorithms.

In this paper, we introduce the Adaptive Reduced-set

Matching Pursuit (ARMP): a new thresholding-based greedy

recovery algorithm for compressed sensing. The ARMP al-

gorithm has a good reconstruction capability at a significantly
low computational complexity compared to existing greedy

recovery algorithms [6, 7, 8, 9, 10]. ARMP correlates the

residual signal with the columns of the sensing matrix in each

iteration, attempting to find the support of the sparse signal

(its nonzero indices). One or more of the elements of the

correlation vector are selected, and their indices are merged

into the support set, which is used to approximate the signal.

The main idea behind ARMP is limiting the set of elements

from which the new ones are selected in each iteration, and

then adaptively picking the largest elements. ARMP then

estimates the signal based on the identified support set and

prunes it to only its largest samples. Unlike related works,

ARMP adapts the number of the selected elements based on

the distribution of the correlation values.

The rest of this paper is organized as follows. Section 2

presents compressed sensing preliminaries. Section 3 reviews

the main greedy recovery algorithms ideas. We propose our

ARMP algorithm in Section 4, and evaluate its performance

in Section 5. We conclude the paper in Section 6.

2. COMPRESSED SENSING PRELIMINARIES

Consider a sparse signal x ∈ R
n, of sparsity level k, and

a measurement system that acquires m linear measurements.

The measurement system samples the signal as

y = Φx, (1)

where Φ ∈ R
m×n is the sensing or measurement matrix, and

y ∈ R
m is the measured vector.

Alternatively, the signal x may not be itself sparse, but it

may be sparse in a certain basis Ψ, i.e. x = Ψs, where s is a

sparse vector. Therefore, (1) can be rewritten as

y = ΦΨs = As, (2)

where Ψ is an n × n matrix whose columns form a basis in

which x is sparse, and A = ΦΨ is an m× n matrix.

In compressed sensing, the measured vector is of a much

less dimension than the original signal, i.e. m � n. It was

shown that the sparse (or compressible) signal x can be re-

covered from the measured signal y provided that the sensing

matrix satisfies the Restricted Isometry Property (RIP) [1, 3].



Definition 1. A matrix A satisfies the restricted isometry

property of order k if there exists a δk ∈ (0, 1) such that

(1− δk)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk)‖x‖22 (3)

holds for all k-sparse signals x.

Random matrices of certain distributions satisfy the RIP

with high probability [11]. More specifically, if the entries

of a matrix are independent and identically distributed (i.i.d.)

and follow a Gaussian, Bernoulli or sub-Gaussian distribu-

tion, then the probability that the matrix does not satisfy the

RIP is exponentially small.

Donoho originally suggested using �1 minimization for

reconstructing the sparse signal as follows [4]

x̂ = argmin
z

‖z‖1 subject to y = Φz (4)

While �1 minimization is a powerful solution for the sparse

problem, this solution is computationally expensive [1].

3. GREEDY RECOVERY ALGORITHMS

Motivated by the need to reach computationally inexpensive

solutions, various greedy algorithms have been proposed in

the literature for signal recovery. Greedy recovery algorithms

iteratively attempt to find the signal support. In each itera-

tion, the sparse signal is estimated based on the identified sup-

port set through least square minimization. Figure 1 shows a

generic block diagram of the main steps for such greedy al-

gorithms. The function of each block is described as follows:

1. Correlation. The residual r is correlated with the columns

of the sensing matrix Φ to form a proxy signal g.

2. Selection and Support Merging. One or more of the ele-

ments of g with the largest absolute values are selected in each

iteration. The indices of the selected elements are merged into

the identified support set to approximate the signal.

3. Signal Estimation. The sparse signal is estimated based on

the identified support using least square minimization. Some

algorithms (thresholding-based) perform a pruning step to the

estimated signal, keeping only the k largest absolute values of

the signal, and setting the rest to zeros.

4. Residual Calculation. The residual is calculated based on

the estimated signal.

3.1. Matching Pursuit Greedy Recovery Algorithms

One of the basic greedy recovery algorithms is the Orthogo-

nal Matching Pursuit (OMP), which selects only one element

from the correlation vector per iteration and adds its index to

the identified support set [6]. Least square minimization is

performed to estimate the signal without pruning. For a k-

sparse signal, k iterations are required for signal reconstruc-

tion. Some algorithms add more than one index per itera-

tion, resulting in faster convergence. The Generalized Or-

thogonal Matching Pursuit (GOMP) selects a fixed number
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×Φ
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x̂

−

Fig. 1. General Block Diagram of Recovery Algorithms

of elements per iteration [7]. The Regularized Orthogonal

Matching Pursuit (ROMP) chooses a set of k largest nonzero

elements, then divides them into groups of comparable mag-

nitudes, and selects the group of maximum energy [12]. The

Stagewise Weak Orthogonal Matching Pursuit (SWOMP) se-

lects the elements with absolute values larger than or equal

to αmax
l

|gl|, where 0 < α < 1 and max
l

|gl| is the largest

magnitude element in the correlation vector [13]. The Stage-

wise Orthogonal Matching Pursuit (StOMP) [14] selects the

elements larger than a threshold determined by the constant

false alarm rate (CFAR) adaptive strategy used in radar sys-

tems [8]. Some algorithms speed up the minimization step

using iterative matrix inversion techniques [15]. Other algo-

rithms exploit the structure of the signal sparsity such as the

Tree-based Orthogonal Matching Pursuit (TOMP) [16].

Analysis: Since OMP adds only one index per iteration,

it requires a larger number of iterations than the rest of the

algorithms. While ROMP improves the speed of OMP by se-

lecting multiple elements per iteration, its reconstruction error

is larger, especially for higher sparsity levels. The algorithm

often results in adding a larger number of indices per iteration

than is necessary, which usually includes ones not belonging

to the support of the original signal. SWOMP and StOMP

attempt to improve the selection stage. However, SWOMP

still suffers from the same drawback of ROMP. Meanwhile,

StOMP gives closer error performance to OMP, while requir-

ing less execution time for higher sparsity levels. Further-

more, none of the aforementioned algorithms contain a prun-

ing step. Thus, incorrectly selected indices will appear in the

signal estimate, which degrades the performance.

3.2. Thresholding-based Greedy Recovery Algorithms

A common drawback in all the aforementioned greedy algo-

rithms is that if an incorrect index is added to the support set

in a certain iteration, it remains in all subsequent iterations,

possibly degrading the performance. Thresholding-based al-

gorithms handle this problem by applying a hard thresholding

operator which removes one or more of the indices having the

least energy from the identified support set. An example is

the Compressive Sampling Matching Pursuit (CoSaMP) [9],

which selects 2k (generally αk) elements per iteration and

performs pruning after signal estimation. The Subspace Pur-



suit (SP) is another thresholding-based algorithm which se-

lects k elements per iteration [10]. Pruning is then performed,

followed by an extra least square minimization step.

Analysis: Such thresholding-based algorithms add a

pruning step at the end of each iteration. However, both

algorithms select a fixed number of elements per iteration

(2k and k, respectively). Such a selection is constant for all

iterations and does not adapt to the distribution of the values

of correlation. Furthermore, it usually results in selecting too

many elements causing a larger reconstruction time, since

more than necessary components are sorted in each iteration.

A large and non-adaptive selection further increases the iter-

ation time as more than necessary nonzero values have to be

estimated by least square minimization. Selecting too many

elements may also reduce the accuracy of the signal estimate,

especially for larger sparsity levels, when incorrect indices

are selected and kept through the subsequent pruning steps.

4. ADAPTIVE REDUCED-SET MATCHING PURSUIT

In this paper, we propose the Adaptive Reduced-set Matching

Pursuit (ARMP), a thresholding-based greedy recovery algo-

rithm. ARMP is based on two main ideas. First, ARMP limits

the set of elements to be searched in each iteration to a re-

duced set containing only the βk largest magnitude elements

in g. Second, ARMP selects from the reduced set the elements

to be added to the identified support set as only those whose

magnitudes are at least a fraction 0 < α < 1 of the maxi-

mum element. This contrasts with SWOMP [13] in which the

selection is made from the entire g and not from a reduced

set. ARMP results in selecting the indices which most likely

belong to the support of the original signal, without taking

too many indices per iteration. Such indices correspond to

columns of the sensing matrix that have the highest correla-

tion with the residual. The performance of ARMP depends

on the proper choice of α and β.

Moreover, ARMP adapts to the distribution of the values

of g. The number of selected elements is not constant for all

iterations. For steeper (flatter) distributions of the absolute

values of g, fewer (more) elements are selected.

After performing the selection step, the newly identified

support set is merged with the previous one. Based on the

merged set, a new signal estimate is generated using least

square minimization. This gives the projection of y onto the

subspace spanned by the columns of the sensing matrix cor-

responding to the identified support set. Then the signal is

pruned keeping only its k largest values. The residual is then

calculated based on the pruned signal. The previous steps are

repeated until a stopping condition is met.

4.1. ARMP Algorithm

Initially, the signal estimate is set to a zero vector and the

residual to the measured vector y. In each iteration, the fol-

lowing steps are performed:

1. Signal Proxy Formation. A signal proxy, g, is formed by

correlating the residual with the sensing matrix columns.

2. Selection and Support Merging. The vector g is sorted

in a descending order of absolute values. The elements which

absolute values are larger than or equal to αmax
l

|gl|, where

0 < α < 1, are selected from a reduced set containing the

βk largest magnitude elements. The indices of the selected

elements are united with the already identified support set.

3. Signal estimation. An estimate of the signal is formed by

least square minimization. This is done via multiplication by

the pseudo-inverse of the sensing matrix.

4. Pruning. The k largest magnitude components in the sig-

nal estimate are retained. The rest are set to zero.

5. Residual Calculation. The new residual is calculated from

the pruned signal.

The algorithm terminates if the norm of the residual is less

than ε1 or if the difference between the norms of the residuals

in two successive iterations is less than ε2, whichever occurs

first. Otherwise, a maximum of k iterations are performed.

Algorithm 1 summarizes the ARMP algorithm. The oper-

ator Lk(·) returns the index set of the k largest absolute values

of the elements of its argument vector. The hard thresholding

operator Hk(·) retains only the k elements with the largest

absolute values and sets the rest to zero.

Algorithm 1 Adaptive Reduced-set Matching Pursuit
Input: Sensing matrix Φ, measurement vector y, sparsity

level k, parameters α and β.

Initialize: x̂[0] = 0, r[0] = y, T [0] = ∅.

for i = 1; i := i+ 1 until the stopping criterion is met do
g[i] ← Φ∗r[i−1] {Form signal proxy}

J ← Lβk(g
[i]) {Indices of βk largest magnitude ele-

ments in g}

W ← {j : |g[i]j | ≥ α max
l

|g[i]l |, j ∈ J} {Indices of

elements in J larger than or equal to α max
l

|g[i]l |}
T ← W ∪ supp(x̂[i−1]) {Support merging}

b|T ← Φ†
T y, b|T c ← 0 {Signal estimation}

x̂[i] ← Hk(b) {Prune approximation}

r ← y − Φx̂[i] {Update residual}

end for
Output: Reconstructed signal x̂

4.2. Performance Metrics

We next evaluate the performance of ARMP against exist-

ing related techniques as well as the original �1 minimization.

Our performance metrics are the recovery time in seconds, the

recovery error (defined as ‖x−x̂‖2/‖x‖2), and the percentage

of correctly identified components of the signal. Furthermore,

we introduce the normalized time-error product in which the

product of the time and error of each algorithm is normalized



Fig. 2. Reconstruction time. Fig. 3. Reconstruction error. Fig. 4. Normalized time-error product.

over the largest product value of all algorithms. This metric

accounts for the trade-off between time and error, since some

algorithms give higher reconstruction accuracy at the expense

of higher computational complexity.

5. PERFORMANCE EVALUATION

5.1. Simulation Setup

For each algorithm, the reported results are the average of the

metrics evaluated for 100 independent trials. In each trial, we

generate a random sparse signals of length n=1000 of uni-

formly distributed integers from 0 to 100. We take m=250

measurements. The sensing matrix A of dimensions m × n
is randomly generated from i.i.d. Gaussian distribution with

columns having unit �2 norm.

We plot the metrics versus sparsity levels from 10 to

150. We present the simulation results of six algorithms: �1
minimization, OMP, SWOMP, CoSaMP, SP, and ARMP. For

SWOMP, we use α = 0.7, as in [13]. The optimal values of α
and β used for our ARMP algorithm were found to be 0.7 and

0.25, respectively. We defer how these values were obtained

and the detailed impact of α and β to a sequel publication.

5.2. Simulation Results

Figure 2 depicts the recovery time versus the signal sparsity

level. �1 minimization was omitted since it takes consider-

ably longer time. ARMP and SWOMP have the least recon-

struction times. However, our ARMP outperforms SWOMP

at high sparsity levels above 70. The reconstruction time of

other thresholding-based algorithms increases rapidly at spar-

sity levels of 70 for CoSaMP and 100 for SP.

Figure 3 compares the recovery error for all algorithms as

a function of the sparsity level. For low sparsity levels, most

of the algorithms produce very low errors, giving accurate

signal estimates. However, as the sparsity of the signal in-

creases, the differences between the reconstruction capability

of the algorithms start to become clear. As expected, �1 mini-

mization has the least error. Our proposed algorithm, ARMP,

has the lowest error compared to all other greedy algorithms.

Fig. 5. Percentage of correctly identified signal components.

Figure 4 shows the normalized time-error product as a

function of sparsity. ARMP gives the smallest product for

most sparsity levels except for sparsity levels around 80

where �1 minimization was slightly smaller. This means

that ARMP achieves a high reconstruction accuracy at low
complexity compared to other algorithms including �1 mini-

mization (which achieves slightly higher accuracy but at the

expense of significantly longer time).

Figure 5 illustrates the percentage of correctly recon-

structed components of the signal. �1 minimization is the best

until a sparsity level of 100, followed by SP and ARMP which

are close. After this point ARMP has the highest percentage,

while the percentage of �1 minimization deteriorates. It is

worth noting that it is not of vital importance to perfectly
reproduce all the signal components in most applications.

6. CONCLUSION

In this paper, we have introduced ARMP: a new thresholding-

based greedy algorithm for compressed sensing recovery.

Simulation results have shown that the proposed ARMP al-

gorithm is superior to main greedy recovery algorithms both

in terms of reconstruction time and accuracy. Furthermore,

ARMP is even superior to �1 minimization in terms of nor-

malized time-error product, a measure which accounts for the

trade-off between the reconstruction time and error.
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