
LCAP - A Lightweight CAN Authentication
Protocol for Securing In-Vehicle Networks

(Full Paper)

Ahmed Hazem∗

Valeo Egypt
Smart Village, Giza, Egypt

Email: ahmed.hazem@valeo.com

Hossam A. H. Fahmy
Electronics and Communications Engineering Dept.,

Cairo University
Giza, Egypt

Email: hfahmy@alumni.stanford.edu

Abstract—The design of in-vehicle communication networks
has been always concerned with reliability and safety. There
was no much attention paid to the security of such networks.
This is because there was no clear evidence if the security
of such networks could be compromised. However, recent ex-
periments have shown the consequences of compromising in-
vehicle networks. Those experiments relied on vulnerabilities
that exist in such networks. Some of those vulnerabilities arise
from the used communication standards themselves. Therefore,
it became necessary to find ways of introducing security to
the used standards. In this paper, a lightweight message source
authentication protocol for Controller Area Network (CAN) [1]
is proposed and fully implemented. The main advantage of
the protocol is that it can be practically deployed in vehicles
manufactured nowadays with minimum overhead. The protocol
does not require any hardware modifications to be done in the
CAN network. Also, it does not add much overhead to the
embedded software of the ECUs. Moreover, it tends to avoid
any modifications from being done to the existing CAN message
sets that are being exchanged between ECUs.

I. INTRODUCTION

Automotive industry has been affected dramatically by the
advances of electronics during the last century. The intro-
duction of electronics into cars has made them no more
pure mechanical systems. Almost every new car manufactured
nowadays contains tens of electronic control units (ECUs) [2].
ECUs have been introduced initially in cars for the purpose
of engine management. Later on, they have been used for
controlling many systems inside cars like brakes, transmission,
airbags, climate control, power windows, infotainment and
telematics. Also, they have been used to add new capabilities
to cars like parking assistance, lane departure warning, blind
spot detection, etc.

Electronic control units themselves are not pure hardware
components. Instead, they consist of both software and hard-
ware. In most cases, the ECU consists of a set of electronic
circuits that are controlled using a microcontroller running
from tens to hundreds thousands lines of code. As a result,
a considerable amount of production defects may arise from
software. When such defects are discovered after cars have
been sold, the ECUs need not to be physically replaced
in order to fix those defects. Typically, reprogramming the

* This work has been done as a part of M.Sc. thesis prepared at the
Electronics and Communications Engineering Dept., Cairo University.

software of the ECU can solve everything. If the defects
are not critical, then car manufacturers do not need to recall
their defected cars in order to fix them. Instead, software
reprogramming can be made during regular service that is
made in authorized workshops.

A. New threats

Although it sounds good to have the ability to fix defected
parts using software, it introduces many safety considerations.
Consider an attacker who has physical access to an ECU and
could insert malicious code into it. Since most of the car
internal networks are linked together, it is possible for this
malicious code to control several safety-critical parts of the
car. This highlights a major risk which has been demonstrated
in [3]. However, if we assume that the attacker may have
physical access to the car then he may be able to replace
complete ECUs not only replace the software flashed in them.

During the development of communication networks inside
cars, it was always assumed that the network is a trusted zone.
May be this assumption came from the fact that cars had
limited interfaces with the outside world. The On-Board Diag-
nostics (OBD II) port was the main external interface between
the car network and the outside world. Recently, cars contain
several wireless interfaces for many purposes. For example,
cars now contain tire pressure monitoring systems (TPMS),
smartphone integration using bluetooth, web connectivity, etc.
Other new interfaces may be deployed for vehicle-to-vehicle
and vehicle-to-infrastructure communications. Thus, cars are
no more closed systems. Accordingly, the car network is no
more a trusted zone. As a result, it is required to secure the
internal network of cars from the threats that may arise from
the new interfaces. This security may be needed either at the
interfaces themselves or within the in-vehicle network or both.

B. Experimental analysis of attacks

All the threats discussed above have always been treated
as impractical until Koscher et al [3] demonstrated how an
attacker can control various car functionalities - including
safety critical systems - ignoring user input. The analysis was
made in two parts. The first part used direct physical access to
the vehicle network through the OBD II port. The second part
[4] investigated using several indirect wireless access methods.



1) Direct Access: In [3], direct physical access to the car
network was feasible through the OBD II port. Having such
access, it was possible to listen to all messages exchanged on
the Controller Area Network (CAN) bus. Also, it was possible
to inject messages into the network. Moreover, it was possible
to dump the code of some ECUs using ReadMemorybyAd-
dress diagnostic service. Using that method of attack it was
possible to control several systems of the car like the engine,
brakes, body controller, instrument panel cluster, radio and
HVAC.

2) Indirect access: In [4], several experiments have been
done using indirect access means. In the first method, the
adversary could gain access to the PassThru device that
connects the workshop computer to the car under service.
Using this access, it is possible to spread an attack among all
cars that are being serviced. Another method of indirect access
is the infotainment systems. Modern infotainment systems are
connected to the in-vehicle networks as well as other external
interfaces. Those interfaces include iPhone integration, web
connectivity. It is clear that compromising any of those inter-
faces could cause threat to the in-vehicle network. In [4], it
was demonstrated that the firmware of the infotainment system
of the car under test could be updated by inserting a CD-Rom
with a certain image name into the CD-Player.

C. Reasons of vulnerabilities

1) Inherent weaknesses: In [3], it has been highlighted that
some of the weaknesses of vehicles security arise from the
properties of the CAN bus itself such as:

• Broadcast Nature
Since the bus has a broadcast nature, then any node
connected to the bus can listen to all data exchanged.

• Fragility to Denial of Service (DoS)
Based on the arbitration scheme of CAN, any node can
put the bus in a dominant state preventing other nodes
from sending any messages.

• Absence of authentication
The CAN message itself does not contain any authentica-
tion information about its sender. Thus, it is possible for
any attacker who connects to the bus to send messages
using the identity of any trusted node.

2) Weaknesses due to deviation from standards: In addition
to the weaknesses mentioned above, there are also some
weaknesses that arise from deviating from security standards
and regulations.

• Reflashing the ECU should be allowed when the car is
stationary only. However, it was possible to reflash some
ECUs in a moving car.

• The key used for reflashing ECUs should be different
from an ECU to another. However, it was found that
sometimes all the cars have the same key for a certain
ECU.

• Standards specify that a CAN gateway can be reflashed
only from the high speed network; and not from the
low speed network. However, it has been discovered that

a gateway can be also reflashed from the low speed
network.

• The stored keys in each ECU shall have restricted access
so that they cannot be disclosed easily. However, it was
possible to retrieve some keys from ECUs.

D. Impact of attacks

The highlighted weaknesses in the security of in-vehicle
networks could attract the attention of criminals. Basically,
thieves may be able to locate cars, unlock the doors and steal
them. It could be also possible to extend the attacks to include
several cars in a city simultaneously causing severe accidents.

E. Motivation of the paper

Based on the risks highlighted above, it is important to find
ways to enhance the security of vehicles. The paper focuses
on one of the major security requirements for in-vehicle
networks which is message source authentication. The paper is
organized as follows. The next section shows the related work
that has been published. Then, a lightweight authentication
protocol is proposed to be used for CAN networks. After that,
we analyze the protocol and compare it with other protocols.

II. RELATED WORK

In this section, we discuss the related work that has been
published in the field of in-vehicle security and multicast
authentication in general.

A. EVITA Project

One of the largest projects that aimed at securing in-vehicle
communication networks is the EVITA project [5]. The goal of
the project was to provide a basis for the secure deployment of
electronic safety aids based on vehicle-to-vehicle and vehicle-
to-infrastructure communication. The target was to comple-
ment other e-safety related projects that focus on protecting
the communication of vehicles with the outside by focusing
on on-board network protection.

This section discusses some of the work done within that
project.

1) Security requirements: The EVITA project has inferred
the a set of security requirements and related functional
requirements in order to satisfy the stated security objectives
[6]. The requirements include: integrity / authenticity of e-
safety related data, secure execution environment, vehicular
access control, trusted on-board platform, secure in-vehicle
data storage, confidentiality of certain on-board and external
communication, privacy and interference of security function-
ality.

2) Security Module: In [7], Marko Wolf et al introduced
the idea of using a security module for providing differ-
ent cryptographic functionalities to vehicles. Both centralized
and distributed approaches were discussed. In the centralized
approach, a single security module was used for providing
security to several ECUs within the car. On the other hand, the
distributed approach was based on attaching a security module
to each ECU that needs protection. From implementation point



of view, both software and hardware can be used for realizing
such security module. In the case of centralized approach, the
hardware implementation is more suitable, while in the case
of distributed approach, the software implementation is more
practical.

3) Key Distribution Protocol for CAN: In [8], a key distri-
bution protocol has been introduced for securing in-vehicle
communications over CAN bus. In each ECU, a hardware
security module (HSM) was attached. The HSM implements
some cryptographic primitives as well as securing the key
storage. The exchange of shared keys is done through a logical
entity called “Key Master” (KM). Each node, has two keys
to communicate with the KM; one for authentication and the
other for transporting generated keys. To establish a secure
communication channel between an ECU and other ECUs,
the following steps are followed:

1) The ECU generates a pair of keys; one for generation
and the other for verification.

2) The ECU sends the verification key encrypted to the
KM.

3) The KM forwards the key encrypted to all other ECUs.
Those generated session keys are made valid for a limited

time only. It is valid for one drive cycle for at most 48
hours. Segmentation of data had to be used by enhancing the
standard ISO 15765-2 [9]. The proposed length of message
authentication code (MAC) is only 32-bits. This is due to the
low speed of the bus as well as the high load.

B. Securing the CAN bus

1) Message Authentication Protocol over CAN: The prob-
lems associated with implementing a backward compatible
message authentication protocol on the CAN bus has been dis-
cussed in [10]. The following authentication protocol require-
ments were addressed: Message authentication, Replay attack
resistance and Backward compatibility. The first requirement
was met by attaching a Message Authentication Code (MAC)
to a message. The algorithm proposed in the paper was
Hash-based Message Authentication Code (HMAC) [11]. The
second requirement was met by inserting a counter value inside
MAC calculations. The most challenging requirement was the
last one. This was because adding any extra data to a message
would exceed the maximum possible length of a message (8
bytes). The proposed solution for use was to use an out-of-
band protocol like CAN+ [12].

Using CAN+, additional data bits can be inserted within
the transmission period of each CAN bit. The length of
authentication data that was sent using CAN+ was 15 bytes
(120 bits). Those 120 bits are divided into 2 parts; 8 Bits for
carrying the status and the remaining 112 bits for carrying
the payload. The authentication data consists of counter value
and a signature. The counter value is used to prevent replay
attacks. A node accepts a message when the received counter
value is greater than the last value. When the counter value
is about to saturate, a new session key has to be established.
The handling of unauthorized messages uses the same error
mechanism used by regular CAN nodes.

2) CAN message encryption using AES and attacking it us-
ing CPA: In [13], confidentiality has been added to CAN using
AES symmetric encryption. The breaking of this algorithm
using side-channel analysis has been studied as well. The parts
of CAN messages that was chosen to be encrypted were the
ID (11-bits), DLC (4-bits) and the data (up to 8 bytes). Thus
the length of plaintext was 10 bytes. However, the block size
of AES is 128 bits (16 bytes). Hence, padding was added
to the 10 bytes of plaintext before the encryption is done.
The resultant of encryption is also 16 bytes, thus requiring
two CAN messages to send it. Hence, two message IDs are
allocated for transmitting these encrypted messages.

3) Multiple MAC per receiver: Using symmetric cryptog-
raphy for multicast authentication has been also discussed
in [14]. In this paper, the sender creates multiple MACs
for each message. Each MAC is calculated using a key
that is shared between the sender and one of the receivers.
The sender appends all those MACs to the message being
transmitted. Each receiver uses its key to verify part of the
MAC. The papers are concerned with multicast authentication
for automotive networks including CAN, FlexRay and Time-
Triggered Protocol. Concerning CAN, it is proposed to use
only half of the payload of each CAN message for carrying
data, while using the remaining 4 bytes for carrying MACs.
If each MAC is composed of one byte, then the message can
carry 4 MACs corresponding to 4 receivers only.

C. The TESLA protocol and its variations

TESLA protocol was proposed in [15] as a new protocol for
multicast authentication. The main idea behind it is to achieve
asymmetric properties by using delayed disclosure of keys.
However, this leads to delayed authentication. This delayed
authentication has two main drawbacks. First, the receiver
need to have storage for some unauthenticated messages till
their key is disclosed. This increases the effect of DoS attack
where an attacker may flood the receiver with many wrong
messages. The second point is that this makes TESLA not
suitable for realtime systems. The protocol was published later
as RFC [16].

In order to achieve immediate authentication, a modification
to TESLA protocol was proposed in [17]. In the proposal,
messages do not need to be queued at the receiver waiting for
being authorized. Instead, they are queued at the sender putting
the hash code of each message in the preceding one. This
solved the problem of DoS attack. Later on, µTESLA [18]
was developed in order to be used in wireless sensor networks.
The main aspects of such systems is the lack of processing
capabilities, low memory for storing code, small RAM and
running on battery power devices. TESLA was also modified
to be used in Secure Real-time Transport Protocol (SRTP) as
in [19]. Recently, another modification was made for TESLA
introducing TESLA++ [20]. TESLA++ was developed to be
used in Vehicular Ad-hoc Networks (VANETs). It modifies
TESLA in a way that makes it resilient to memory-based DoS
attacks.



III. LIGHTWEIGHT CAN AUTHENTICATION PROTOCOL

In this section, we propose an authentication protocol to be
used for securing CAN networks.

A. Threat Model and Security Requirements

In-vehicle networks consist of various ECUs that are in-
terconnected using communication buses. There are many
types of communications buses used like CAN [1], LIN [21],
FlexRay [22] and MOST [23]. CAN is the most used type
of buses. As discussed earlier, CAN messages do not contain
any source or destination addresses. Also, it does not provide
any means of authentication. Hence, any adversary node that
succeeds to gain access to the bus can listen to any transmitted
message. Moreover, it can inject malicious messages into the
network.

In this section, we propose a new authentication protocol
that can be deployed inside in-vehicle networks. The protocol
is designed mainly to be used inside CAN networks. However,
it can be also used in other communication bus types.

When protecting in-vehicle network from a compromised
node, we consider two cases:

Case A: The CAN bus has some ECUs connected to it. One
of these ECUs was previously compromised by an adversary.

ECU 1ECU 2ECU 3

ECU 5ECU 6ECU 7

ECU 4

Fig. 1. Case A: Existing ECU is compromised

Case B: The CAN bus has some ECUs connected to it.
All ECUs are communicating correctly. The adversary node
is attached to the CAN bus at some point of time. According
to the CAN bus specification, the attached node can listen to
all exchanged CAN messages. Also, it has the ability to send
any CAN message on behalf of any other node.

ECU 1ECU 2ECU 3

ECU 5ECU 6

ECU X

ECU 4

ECU 7

Fig. 2. Case B: Adversary node connected to the bus

For both cases, in order to protect the network against such
attacks, message source authentication is required. However,
the CAN bus protocol does not specify any means of authen-
tication. As a result, it is required to design a higher level
authentication protocol that can be adopted in automotive CAN
networks. There are 2 main challenges when designing that
authentication protocol.

1) The protocol shall add a small communication overhead.
The payload of any CAN message is already too small
(8 bytes by maximum). For the current networks, those 8
bytes are highly utilized. Thus, the smaller the overhead
used, the easier to deploy the authentication protocol in
the currently designed networks with minimum refor-
matting of messages.

2) The protocol shall not require either heavy computation
or high memory consumption. This is because the cur-
rently produced ECUs use microcontrollers with limited
resources.

B. The CAN Authentication Protocol

1) Mutlicast Authentication Overview: Basically, in order
to achieve message source authentication we need to satisfy
the following requirements:

• The message shall contain an evidence that can be
generated only by its trusted sender.

• The receiver shall be able to verify that evidence.
• The receiver shall not be able to re-transmit the message

masquerading the trusted sender.
In the case of unicast communication (which is not the case

of CAN bus), symmetric cryptography can be used to achieve
authentication between the two communicating entities. The
two entities have a shared secret that can be used to prove the
authenticity of the sender.

However, in the case of multicast communication (which is
the case of CAN bus), asymmetric cryptography is needed in
order to prevent any receiver from sending messages on behalf
of the original sender. Unfortunately, asymmetric cryptography
is too heavy to use in our domain specially when implementing
it in software.

If we try to use TESLA in CAN networks we will find
that we will need large communication overhead because each
message shall contain the original data to be transmitted in
addition to the MAC and a key. Also, the delay introduced by
TESLA in unacceptable for in-vehicle networks as real-time
systems.

2) Main Idea: From our point of view, it is only required to
append a magic number to the message that can be verified by
the receiver. This magic number can be only selected by the
sender and verified by the receiver. The process of generating
this magic number is based on the one-way hash function
employed in TESLA protocol. The sender selects a random
number then applies a transformation function multiple times.
The result is used in reverse order. The last generated value
of the chain is communicated initially to each receiver. Each
receiver can verify the message by applying the transformation
function on the current received value and compare it to the
previous value. Keeping in mind that the payload of a CAN
message is only 8 bytes, then we should not add a large
overhead. The proposed length of the magic number is 2 bytes.

3) Modes of Operation: The protocol can be used in one
of two modes:

• Extended Mode
• Standard Mode



In the Extended Mode, the magic number is sent using
the “Extended Identifier” field of the CAN message. Thus,
the payload of the original CAN message is not affected.
This requires that extended identifier is enabled in the CAN
controller, but all its bits are masked in order to receive all
messages and then apply authentication in the upper levels.
This mode is suitable for messages having standard identifier
only.

In the Standard Mode, 2 bytes of the CAN message payload
are used for sending the magic number. For CAN messages
whose payload is less than or equal to 6 bytes, this does not
add any overhead. However, for larger messages, re-formating
is needed for the messages as 75% of the message is only
usable. This mode is suitable for messages having extended
identifier where the Extended Mode described above cannot
be used.

In order to increase the security of the protocol, the payload
of the CAN message including the magic number shall be
encrypted using a symmetric key. The shared key used in
encryption shall be communicated to each receiver. Note that
this encryption increases the security of case B only. This is
because in case A, one of the receivers is compromised and
hence knows the encryption key.

C. Protocol Details

1) Assumptions: In a CAN network, there exists multi-
ple nodes which are communicating together in a broadcast
way. In our analysis, we consider a set of n sender nodes
S1, S2, ...Sn that are broadcasting p messages to m receiver
nodes R1, R2, ...Rm. For each pair of sender-receiver, there
exists a shared secret that is stored in both ECUs. It is assumed
that it is stored in a protected memory that cannot be easily
read. When an ECU is replaced, it shall be calibrated with
other existing ECUs so as to set communication keys correctly.

2) Notation:

• The symbol ‘|’ is used to concatenate bytes together.
• i: The index of the message to be transmitted, where
i ∈ (1, p).

• j: The order of the message to be transmitted, where
j ∈ (1,∞).

• Dij : The data to be transmitted by the jth message of
index i.

• Mij : The magic number transmitted with the jth message
of index i.

• KS : The session key.
• E(x, k): Encryption function that encrypts x using the

key k.
• D(x, k): Decryption function that decrypts x using the

key k.
• H(x, k): HMAC function applied on a variable x using

the key k.

3) Protocol Parameters:

• λ : The size of the magic number chain.
• α: The length of the magic number in bits.

• δ: The maximum number of trials made by the receiver
to detect lost messages.

• τ : The time after which a sender is considered absent.

The parameter λ depends on two main things. It should be
less than 2α in order not to repeat the magic number. Also, it
specifies the memory requirements for the sender. The larger
the value of λ, the larger memory is used by the sender to
store the chain. If λ takes its maximum possible value 65535,
then 128 kilobytes are needed to store the chain. According to
the capabilities of ECUs used in today’s vehicles, this memory
size is hard to achieve.

4) Handshaking: During various phases of the protocol,
many handshaking messages are exchanged between senders
and receivers. This requires defining new CAN messages to
the network in which the authentication protocol is going to
be deployed. All the messages have the same standard CAN
identifier (11 bits), but they differ in the value of the extended
identifier (18 bits). For each pair of a sender and a receiver,
five messages are defined:

• Channel Setup Request
• First Response Message
• Consecutive Response Message
• Soft Sync Request
• Hard Sync Request

Thus, the total number of needed CAN message identifiers
to be added is equal to 5× Number of senders × Number
of receivers. The format of different handshaking messages is
shown in figures 3, 4 and 5.

1 2 3 4 5 6 7 8
1

Not used
2
3

Nonce
4
5
6
7

Checksum
8

1 2 3 4 5 6 7 8
1

Magic Number
2
3

Hash(Nonce)
4
5
6
7

Checksum
8

1 2 3 4 5 6 7 8
1

Magic Number
2
3

Payload
4
5
6
7

Checksum
8

Fig. 3. (Channel Setup) / (Soft Sync) / (Hard Sync) Request Message

1 2 3 4 5 6 7 8
1

Not used
2
3

Nonce
4
5
6
7

Checksum
8

1 2 3 4 5 6 7 8
1

Magic Number
2
3

Hash(Nonce)
4
5
6
7

Checksum
8

1 2 3 4 5 6 7 8
1

Magic Number
2
3

Payload
4
5
6
7

Checksum
8

Fig. 4. First Response Message

1 2 3 4 5 6 7 8
1

Not used
2
3

Nonce
4
5
6
7

Checksum
8

1 2 3 4 5 6 7 8
1

Magic Number
2
3

Hash(Nonce)
4
5
6
7

Checksum
8

1 2 3 4 5 6 7 8
1

Magic Number
2
3

Payload
4
5
6
7

Checksum
8

Fig. 5. Consecutive Response Message



As shown in the figures 3, 4 and 5, the last 2 bytes of each
message are used to contain the checksum of the first 6 bytes.
This is to preserve the integrity of the message. For “First
Response” and “Consecutive Response” messages, the 1st 2
bytes of the message contain a “magic number” that is used
to authenticate the messages.

D. Protocol Phases

The protocol consists of the following phases:
• Initialization
• Channel Setup
• Message Setup
• Data Exchange
• Chain Refresh

For the protocol to be robust, two additional phases are
needed:

• Soft Synchronization
• Hard Synchronization
1) Initialization: In this phase, each sender creates the

“Handshaking Magic Number Chain”, “Channel Magic Num-
ber Chain”, the “Session Key” KS and the “HMAC Key” KH .
Also, it generates the “Magic Number Chain” for each of the
messages it transmits.

2) Channel Setup: In this phase, the sender distributes
“Session Key”, “Channel Initial Magic Number” and “HMAC
Key” to each receiver separately. The sender encrypts this
information using a symmetric key. For each receiver, it uses
a separate key that is pre-shared between the sender and the
receiver. This pre-shared key is programmed in the ECUs
during production and shall be updated when an ECU is
replaced. The length of this key is 128 bits.

The “Session Key” that is sent in this phase is the key
that will be used later to encrypt/decrypt any data exchanged
with the sender. The length of this key is chosen be 80 bits.
Since this length does not fit in one message, then it will be
sent in three parts. The “Channel Initial Magic Number” is
a magic number to let the receivers authenticate the sender
during “Message Setup” phase. The “HMAC Key” is the key
that is used to perform HMAC operation during other phases.
The length of the “HMAC key” is 16 bits.

The following steps are repeated for each receiver:
1) The receiver sends “Channel Setup Request” message

to the sender. The message contains a 32-bit nonce. The
message is encrypted using the pre-shared key between
the two nodes.

2) The sender replies by a “First Response” message. The
message contains the hash value of the nonce (truncated
to 16 bits). It contains also a “magic number” that will
be used to authenticate the sender during the rest of this
phase.

3) The sender sends a “Consecutive Response” message
containing the 1st 4 bytes of the “Session Key”. The
“magic number” that is sent in this message can be
authenticated by applying hash function on it and com-
paring it to the previously sent “magic number”.

4) The sender repeats the previous step for the 2nd and 3rd

parts of the “Session Key”. For the 3rd part, only two
bytes of the payload are used.

5) Finally, the sender sends the “Channel Initial Magic
Number” Mc0 and the “HMAC key” KH .

Note that steps from 1 to 4 are encrypted using the pre-
shared key of the 2 ECUs while step 5 is encrypted using the
session key KS .

Receiver

Channel Setup Response

Channel Setup Request

Session Key 1

Session Key 2

Channel Initial Magic Number, HMAC Key

Sender

Session Key 3

Fig. 6. Channel Setup

When the receiver does not receive response from a sender
after a certain timeout period defined by the parameter τ , then
the receiver shall consider this sender absent from the network.
Finally, at the end of this phase, each receiver will have the
“Session Key”, the “HMAC Key” and the “Channel Initial
Magic Number”. A sender shall respond to “Channel Setup”
only at the start of a new driving cycle. This is to protect the
sender against denial of service attacks.

Strength of the pre-shared key Since the length of the pre-
shared key is 128 bits, then it needs 2127 trials on average in
order to break the key. The time needed for a trial is bounded
by the minimum of the time needed for initiating a new driving
cycle. Assuming that this value can be as low as 1 second.
Then the time needed to make the 2127 trials is 5.4 × 1030

years.
Strength against replay attacks Replaying a receiver

request to the sender may allow the sender to do the channel
setup based on an invalid nonce value. In this case, the receiver
will not accept any of the sent parameters. Replaying sender
responses is not possible because it depends initially on the
value of the nonce and later on, it depends on the values of
the magic numbers. In both cases, the receiver will reject the
replayed value.

Strength of the HMAC key The length of the “HMAC
Key” is chosen to obtain HMAC security of 16 bits. According
to [24], the security of HMAC is divided into two parts;
the security of the HMAC algorithm and the security of the
HMAC value. The security of the HMAC algorithm is the
minimum of the security of HMAC key and twice the length
of the output of the used hash function. The latter parameter
is 32 bits. Therefore, from this point of view, the length of
HMAC key shall be set to 32 bits. On the other hand, the
security of the HMAC value is bounded by the length of the
HMAC output which is 16 bits. Therefore, it is sufficient for



the length of the HMAC key to be 16 bits.
3) Message Setup: In this phase, the sender sends the initial

magic number of each message that it transmits to all its
receivers. This is done in a broadcast way, i.e. it sends the
initial magic number of each message to all receiving nodes;
not to each node separately. This information is sent using the
same data message; not the handshake message. The payload
of the data message in this case consists of the following:

• Magic Number (That can be authenticated using the
“Channel Initial Magic Number” that has been sent
during the “Channel Setup” phase).

• Initial magic number for the data message.
Note that the sender cannot use the same magic number to

authenticate all messages that it sends. Therefore, the messages
shall be ordered in a way such that each message uses an order
of the magic number. For example, the first message can be
verified by applying the one-way hash function once, while
the second message can be verified by applying the one-way
hash function twice and so on.

Strength of the session key The size of the session key is
80 bits. Then, for a brute force attack it needs 279 trials on
average in order to determine the key. However, these trials
have to be done during the validity period of the session key.
As mentioned earlier, the session key lasts for a complete
driving cycle - which is assumed - to take 24 hours by
maximum. Then, it is required to do 279 = 6 × 1023 trials
in 24 hours in order to break the session key. This means that
it is required to do 6.9× 1012 trials per microsecond which is
impractical to do with the speed of CAN.

4) Data Exchange: Once the “Session Key” KS , “HMAC
Key” KH and the “Initial Magic Number” Mi0 of each CAN
message are sent to all receivers, the data exchange can begin.

Sender The sender uses the magic number chain in a reverse
order.

1) The sender appends the current magic number Mij to
the current message Dij

2) The sender encrypts the resultant using the session key
KS

The sent message takes the form:

E((Mij |Dij),Ks)

In “Standard Mode”, the result of encryption in the equation
above is sent in the payload of the CAN message. However in
“Extended Mode”, the first 2 bytes are sent using the extended
identifier field, while the rest is sent in the normal payload of
the CAN message.

Receivers The receiver verifies the message by the follow-
ing steps:

1) The receiver decrypts the message using the “Session
Key” KS .

2) The receiver extracts the magic number Mij .
3) The receiver verifies the magic number by applying

the HMAC function on it (using the HMAC key KH ),
truncating the result and comparing it to the previous
magic number.

5) Chain Refresh: It is required to refresh each magic
number chain used periodically. A separate chain refresh phase
is required. Before the current used chain expires, the sender
uses the current authenticated channel to transmit the new
initial magic number to all receivers.

The steps taken by the sender are as follows:
1) When sending the message number λ − 1, the sender

does not send the regular data message, but sends the
new initial magic number of the chain. This message is
authenticated using the last element in the current magic
number chain.

2) All receivers will receive the new initial magic number.
Refreshing the magic number by this way has a drawback

that a regular data message is dropped in order to send the
new initial magic number. This can be acceptable for some
messages while it cannot be accepted for others. For the
latter case, an out-of-bound message (using a separate CAN
identifier) shall be used for the purpose of refreshing the chain.

Security of the chain length According to [24], the pre-
image strength of a truncated hash function is equal to the
truncated length (16 bits in our case). In our implementation,
we chose λ to take the value of 100 which is much less than
216.

6) Soft Synchronization: At any point of time, any of the
receivers may lose synchronization and want to synchronize
the values of the magic numbers of all the messages it receives.
In this case, the receiver uses the following sequence with all
its senders:

1) The receiver R sends sync request message to the sender
S.

2) The sender S replies by the current magic number for
each message that it sends to that receiver (encrypted by
the session key)

The authentication of exchanged messages is done in the
same way as in “Channel Setup” phase.

Receiver

Soft Sync Request

Current Magic Number of message 1

Sender

Current Magic Number of message 2

Current Magic Number of message i

Soft Sync Response

Fig. 7. Soft Synchronization

7) Hard Synchronization: If any of the receivers loses the
“Session Key” or the “HMAC Key”, then it needs to perform
hard synchronization. In this case, the following sequence is
used:

1) The receiver R sends a hard synchronization request to
the sender S.



2) The sender S replies with the “Session Key” and the
“HMAC Key”.

3) The sender sends current magic numbers in the same
way as in soft synchronization.

The authentication of exchanged messages is done in the
same way as in “Channel Setup” phase.

Receiver

Hard Sync Request

Session Key 1

Session Key 2

Sender

Current Magic Number of message 1

Current Magic Number of message 2

Current Magic Number of message i

Session Key 3

Hard Sync Response

HMAC Key

Fig. 8. Hard Synchronization

E. Cryptography

As described above, the protocol needs some cryptographic
functions to be used. There are 3 functions required which
are:

• Encryption/Decryption
• One-Way Hash Function
• Random number generation
1) Encryption/Decryption: Encryption/Decryption is used

for all exchanged messages. The maximum size of data to
be encrypted is the maximum size of a CAN message in
addition to the size of the extended identifier. The size of
the extended identifier is 18 bits, but only 16 bits are used for
sending the magic number in “Extended Mode”. Hence, the
maximum size of data to be encrypted is 10 bytes. According
to the assumptions above, the session key size is 10 bytes.
Due to the small size of data, symmetric stream cipher is
used. Any stream cipher can be used. It is recommended to
use any stream cipher recommended by eStream project [25].
However, when the used cipher requires key size larger than
12 bytes, then the protocol has to be modified in either of
two ways. Either to keep the same size of exchanged keys
fixed, but add a predefined part of the key shared between
all nodes. The other solution is to increase the number of
messages exchanged in the starting phase. For simplicity, we
use RC4 to implement the protocol.

2) One-Way Hash Function: One-Way hash function is
used to generate the chain of the magic numbers. If we use
a hash function like SHA-256 the resultant chain will be
always the same for the same initial seed i.e. the chain would
be static. Therefore, if an attacker could generate the chain

offline, then he could be able to send messages on behalf of
the authenticated sender. Therefore, we choose to use HMAC
[11]. Then, we truncate the result of the HMAC function to 2
bytes only in order to fit for the chosen magic number size.
According to [24], the minimum length of the truncated result
shall be greater than 8-bits. In our case, we take the leftmost
16-bits.

3) Random Number Generation: Random number gener-
ation is used to generate the “Session Key”, “HMAC Key”
and the magic number chains. In our implementation, we used
“rand” function of the C library. This function needs a random
seed to be used each time. This seed could be generated using
any unused ADC channel of the microcontroller. However, it is
recommended to use a stronger pseudo-random function rather
than “rand”.

F. Implementation

The authentication protocol was implemented on Starter-
TRAK TRK-MPC5604B board manufactured by Freescale
Semiconductors. The board contains MPC5604B PowerPC
microcontroller. The main features of the microcontroller are:

• CPU: e200Z0h
• Max clock frequency: 64 MHz
• Code Flash: 512 KB, Data Flash: 64 KB
• Number of CAN controllers: 3
The protocol was implemented in C-code running at 64

MHz.

IV. ANALYSIS AND RESULTS

The main concern while designing the protocol was to make
it simple, practical and lightweight so that its adoption inside
automotive CAN networks is easy and with the minimum
overhead and cost. In this section, we analyze the protocol
and compare it to other protocols.

The proposed threat model considered two cases; case A and
case B. Using our authentication protocol for case B, if the
adversary node tries to send a message on behalf of its original
sender, the receivers will not authenticate it. The same applies
for case A as well. However, the data sent by the compromised
node itself is not guaranteed to be correct although it is being
authenticated.

In order to analyze the authentication protocol and compare
it to other protocols, the following factors have to be taken into
consideration:

• Hardware modifications
• Software overhead
• CAN message set modifications
• Response time
• Scalability
• Maintainability

A. Hardware modifications

The protocol does not need any hardware modifications to
be done inside the CAN network. It works with traditional
CAN transceivers and CAN controllers. This means that no
additional hardware cost is needed to deploy it. From this



point of view, the protocol is more practical to be deployed
rather than the protocol proposed in [10] that needed new
CAN controller and CAN transceiver. It is also better than
using Hardware Security Module (HSM) defined in EVITA
project [5] since the HSM needs additional cost to be added
to each vehicle being manufactured. However, HSM provides
stronger security features since it depends on hardware for
implementing cryptographic functions.

B. Software and Response Time Overhead

This overhead can be divided into the following:
• CPU load and memory consumption needed for perform-

ing cryptographic calculations as well as the protocol
logic.

• Response delay due to the time consumed in adding
authentication data (at the sender side) and verifying it
(at the receiver side).

• Initialization delay that is induced from the setup phases
of the protocol.

The execution time of RC4 encryption / decryption of single
CAN message took around 160µs. This is for extended mode;
where 10 bytes are encrypted / decrypted. However, this is
the time consumed in both generating the key stream and
performing XOR operation. It is more efficient to create the
stream once for each used key and use it many times. Also,
it is recommended [26] to drop the first generated 512 bytes
of the stream.

The execution time of HMAC using 16-bit key using
different hash functions is shown in table 1. Initial results have
been obtained for an unoptimized code. Then, the code was
optimized so that part of the HMAC algorithm is performed
once for each key, then the rest of the algorithm is performed
for every subsequent run.

MD5 SHA 1 SHA 224 SHA 256
Unoptimized Code 150 286 543 543
Optimized Code 144 278 539 540

(1st run)
Optimized Code 86 154 285 285
(subsequent run)

TABLE I
EXECUTION TIME (IN MICROSECONDS) OF ONE HMAC OPERATION

HMAC calculation is needed to be performed at the re-
ceiver side for each received CAN message. According to the
acceptance of how many messages that can be dropped, this
operation can be needed many times per message.

In order to have a uniform load at the sender side when
refreshing magic number chains, it is recommended that the
sender generates the new chain while consuming the current
chain. In other words, with every message that the sender
transmits, it consumes an element of the current chain and
at the same time, it generates a new element of the new chain.

C. CAN message sets modifications

One of the main points to consider when selecting an
authentication protocol for CAN is its effect on the message

sets within the CAN network in which the protocol shall be
deployed. For “Extended Mode”, the CAN messages are not
modified at all. For “Standard Mode”, only CAN messages
whose payload is greater than 6 bytes shall be reformatted.
The method described in [10] is better than our protocol in
this point. This is because it uses out-of-band transmission
and hence does not affect CAN message sets at all.

D. Scalability
In order to discuss the scalability, two parameters are stud-

ied. The first one is the number of exchanged CAN messages
inside the CAN network. The other one is the number of ECUs
that communicate together inside the network.

For the first parameter, the protocol timings are not affected
with increasing the number of exchanged messages except
for “Soft Synchronization” and “Hard Synchronization” where
the time needed for such phases increases linearly with the
increase of the number of messages. On the other hand,
memory consumption increases linearly by increasing the
number of messages since the sender has to generate a magic
number chain for each sent message and keep it in the memory.

For the second parameter, the time consumed in “Channel
Setup” phase increases with increasing the number of ECUs
as follows. For each additional ECU that communicates with
n existing ECUs, n channels need to be setup. This is a
disadvantage of the protocol. However, its impact is minimized
by choosing “Channel Setup” to be done at the initialization
of ECUs only. It is also better than [14]; where a message
authentication code (MAC) is added inside the payload of the
message for each receiver. This consumes most of the payload
and does not fit for large number of receivers.

E. Maintainability
When it is required to replace an ECU that implements

the authentication protocol, calibration shall be done to the
new ECU as well as other ECUs that communicate with it
using the CAN bus. As described earlier, this step is needed
to update the pre-shared keys that are used for the “Channel
Setup” phase. As long as the calibration process is done in a
secure way, then the protocol supports the maintainability of
ECUs implementing the protocol.

V. FUTURE WORK

A. Reduce the time of Session Key distribution
The session key is distributed to each receiver separately.

The disadvantage of this is that it consumes time to send the
key to each receiver. Using a more efficient key distribution
protocol is a challenging point. The challenge is in finding a
protocol that does not need much computation so that it can
be implemented in all ECUs connected to the CAN bus.

Using public-key cryptography to exchange keys can be an
alternative. However, it requires that all ECUs be able to do
heavy computations. Hence, the optimum solution can be to
use a hybrid scheme; where ECUs with small computational
capabilities exchange keys using the method described in
this paper while other ECUs exchange keys using public-key
cryptography.



B. Adapting the protocol to other communication standards

Designing an authentication protocol for the CAN bus
is limited by the bandwidth available for transmitting au-
thentication data. The upper bound for this bandwidth is 8
bytes assuming no traffic is sent on the bus. Therefore, it
is recommended for in-vehicle networks to migrate to other
buses offering larger bandwidth so that strong authentication
is possible. The first candidate for migration is the FlexRay
protocol which is already deployed in many cars. It offers bet-
ter opportunity for authentication since the size of its payload
can reach up to 254 bytes. The other strong candidate is One
Pair Ethernet [27]. Historically, Ethernet was not used inside
vehicles due to its bad performance in the electromagnetic
environment inside the vehicle. However, with the introduction
of One-Pair Ethernet, it became now possible to use Ethernet
with message sizes up to 1500 bytes.

VI. CONCLUSION

The exposure of in-vehicle networks to the external world
requires securing the communication inside these networks.
However, security adds a cost represented by extra processing,
memory, reformatting of messages and time delay - both at
initialization and in runtime. At the same time, the small
payload of CAN messages puts a limit on the strength of the
security that could be added to the bus.

Some authentication protocols have been proposed before
but their adoption was not easy because they either needed
modifications in the physical layer of the CAN [10] or they
added much overhead inside the CAN message [14] that
reduced the size of the useful payload inside the message.

The main goal of the work presented in the paper is
to add lightweight authentication to the CAN bus with the
minimum impact on the currently deployed networks. The
protocol shows good analysis results and proves that it is
more practical than other published protocols and is low-cost
as well. However, due to the small bandwidth available for
exchanging authentication data, it is recommended to migrate
in-vehicle communication networks to a higher bandwidth
ones like FlexRay and One Pair Ethernet.

REFERENCES

[1] CAN Specification, Robert BOSCH GmbH Std. Version 2.0, 1991.
[2] R. N. Charette, “This car runs on code,” IEEE Spectrum, feb 2009.
[3] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,

D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage,
“Experimental security analysis of a modern automobile,” in Security
and Privacy (SP), 2010 IEEE Symposium on, Oakland, CA, USA, may
2010, pp. 447–462.

[4] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Sav-
age, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno, “Comprehensive
experimental analyses of automotive attack surfaces,” in Proceedings of
the 20th USENIX conference on Security, Berkeley, CA, USA, aug 2011.

[5] E-safety vehicle intrusion protected applications (EVITA). Last
accessed: July 2012. [Online]. Available: http://evita-project.org/

[6] L. Apvrille, R. El Khayari, O. Henniger, Y. Roudier, H. Schweppe,
H. Seudié, B. Weyl, and M. Wolf, “Secure automotive on-board
electronics network architecture,” in FISITA 2010, World Automotive
Congress, 30 May-4 June 2010, Budapest, Hungary, May/Jun. 2010.

[7] M. Wolf, A. Weimerskirch, and T. J. Wollinger, “State of the art: Em-
bedding security in vehicles,” EURASIP Journal on Embedded Systems,
vol. 2007, 2007.

[8] H. Schweppe, Y. Roudier, B. Weyl, L. Apvrille, and D. Scheuermann,
“Car2x communication: Securing the last meter - a cost-effective ap-
proach for ensuring trust in car2x applications using in-vehicle symmet-
ric cryptography,” in Vehicular Technology Conference (VTC Fall), 2011
IEEE, sep 2011, pp. 1–5.

[9] Road vehicles – Diagnostic communication over Controller Area Net-
work (DoCAN) Standard – Part 2: Transport protocol and network layer
services, ISO Std. 15 765-2, 2011.

[10] A. V. Herrewege, D. Singelee, and I. Verbauwhede, “CANAuth - a
simple, backward compatible broadcast authentication protocol for CAN
bus,” in 9th Embedded Security in Cars Conference, Dresden, Germany,
nov 2011.

[11] The Keyed-Hash Message Authentication Code (HMAC), National Insti-
tute of Standards and Technology Std. FIPS PUB 198-1, 2008.

[12] T. Ziermann, S. Wildermann, and J. Teich, “CAN+: A new backward-
compatible controller area network (CAN) protocol with up to 16x
higher data rates.” in Design, Automation Test in Europe Conference
Exhibition, 2009. DATE ’09., apr 2009, pp. 1088–1093.

[13] M. D. Hamilton, M. Tunstall, E. M. Popovici, and W. P. Marnane,
“Side channel analysis of an automotive microprocessor,” in Signals and
Systems Conference, 208. (ISSC 2008). IET Irish, jun 2008, pp. 4–9.

[14] C. Szilagyi and P. Koopman, “A flexible approach to embedded net-
work multicast authentication,” in 3rd Workshop on Embedded Systems
Security (WESS’2008), Atlanta, Georgia, USA, oct 2008.

[15] A. Perrig, R. Canetti, J. Tygar, and D. Song, “Efficient authentication
and signing of multicast streams over lossy channels,” in Security and
Privacy, 2000. S P 2000. Proceedings. 2000 IEEE Symposium on,
Berkeley, CA, USA, may 2000, pp. 56–73.

[16] A. Perrig, D. Song, R. Canetti, J. D. Tygar, and B. Briscoe, “Timed
efficient stream loss-tolerant authentication TESLA: Multicast source
authentication transform introduction,” RFC 4082 (Informational),
Internet Engineering Task Force, jun 2005. [Online]. Available:
http://www.ietf.org/rfc/rfc4082.txt

[17] A. Perrig, R. Canetti, D. Song, and J. D. Tygar, “Efficient and secure
source authentication for multicast,” in Network and Distributed System
Security Symposium, NDSS ’01, San Diego, CA, USA, feb 2001, pp.
35–46.

[18] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar, “SPINS:
Security protocols for sensor networks,” in Seventh Annual International
Conference on Mobile Computing and Networks (MobiCOM 2001),
Rome, Italy, jul 2001.

[19] M. Baugher and E. Carrara, “The use of timed efficient
stream loss-tolerant authentication (TESLA) in the secure real-
time transport protocol SRTP,” RFC 4383 (Proposed Standard),
Internet Engineering Task Force, feb 2006. [Online]. Available:
http://www.ietf.org/rfc/rfc4383.txt

[20] A. Studer, F. Bai, B. Bellur, and A. Perrig, “Flexible, extensible,
and efficient VANET authentication,” Journal of Communications and
Networks, vol. 11, no. 6, pp. 574–588, dec 2009.

[21] LIN Specification Package, LIN Consortium Std. Revision 2.2A, 2010.
[22] FlexRay Protocol Specification, Flexray Consortium Std. Version 3.0.1,

2010.
[23] MOST Specification, MOST Cooperation Std. Rev. 3.0 E2, 2010.
[24] Recommendation for Applications Using Approved Hash Algorithms,

National Institute of Standards and Technology, 2009.
[25] M. Robshaw and O. Billet, Eds., New Stream Cipher Designs: The

eSTREAM Finalists. Springer, 2008.
[26] ECRYPT II Yearly Report on Algorithms and Keysizes, European Net-

work of Excellence in Cryptology II, 2011.
[27] P. Hank, T. Suermann, and S. Mller, “Automotive ethernet, a holistic

approach for a next generation in-vehicle networking standard,” in
Advanced Microsystems for Automotive Applications 2012. Springer
Berlin Heidelberg, 2012, pp. 79–89.


