جامعة القاهرة



# Analog Integrated Circuits Lecture 2: Common-Mode Feedback Circuits

ELCN467 – Spring 2014 Dr. Mohamed M. Aboudina

maboudina@gmail.com

Department of Electronics and Communications Engineering Faculty of Engineering – Cairo University

Introduction



- Fully differential opamp is an opamp where the output is a differential signal as well.
- V<sub>out+</sub> and V<sub>out-</sub> must be referred to a common-mode level (V<sub>ocm</sub>).

## Output Common-Mode Level



- Two fighting sets of current sources.
- Outputs are floating points (= high-impedance points)  $\rightarrow$  DC-level is not defined in this circuit.
- We must adaptively adjust either the pull-up or the pull-down currents until both match → Output level in the middle.
- Feedback is used to detect the output CM level and adjust one of the two current sources. This Feedback must not corrupt the differential signal.

# How to define the output's common mode?

- Circuits needed:
  - Common-mode sensing ≡ Averaging circuit
  - Comparator
- Average operation monitors the bias point but rejects the differential signal.







## Common-Mode Feedback Circuit – Example 1

 The feedback is called : Common-Mode feedback "CMFB"

• 
$$V_{outCM} = V_{DD} - |V_{GSp}|$$
  
=  $V_{DD} - (|V_{THp}| + |V_{eff}|)$ 

- Drawbacks:
  - Swing is limited to  $\pm |V_{THp}|$
  - Resistors are used in sensing the common mode, which load the differential signal and hence lower the gain. Problem is more obvious when output stage is a cascode stage.



## Common-Mode Feedback Circuit – Example 1 - Modified



- In order to avoid output loading, Source followers can be used to isolate between the output stage and the sensing circuit.
- $V_{out,CM}$  is the a representation of the output common mode but not the exact one.

• 
$$V_{out,CM} = \frac{V_{out1} + V_{out2}}{2} - V_{GS,SF}$$

•  $V_{GS,SF}$  is a fixed value because  $I_1 = I_2 = \text{constant}$ .

## Common-Mode Feedback Circuit – Example 2A



• What is the problem with this architecture?

## Common-Mode Feedback Circuit – Example 2B



# Common-Mode Feedback Circuit – Example 3

- Output bias is set by the  $V_{GS}$  of the pull down FETs.
- Since, optimum bias  $\sim \frac{V_{DD}}{2} \rightarrow$  The pull-down current sources are biased in **triode**.
- What about CMRR?
  - The feedback across the NMOS pull-down devices, improves the current source resistance (in closed loop) → high CMRR.
  - − But speed is not high, MOS transistors in triode have low  $f_T \rightarrow$  Can't correct high speed commonmode variations.
- Drawbacks:
  - Output common mode is not well defined and is a function of the device parameters.
  - Current source devices (triode) are usually huge.
  - Swing is limited to guarantee both transistors are in triode.



Common-Mode Feedback Circuit – Example 3 - Modified

- If  $M_9 = M_{15}$  and  $M_{16} = M_7 + M_8$  $\rightarrow I_1 = I'_1$  only if  $V_{outCM} = V_{ref}$
- $I_3 = I_1'/2 + I_2$
- For all current sources to be in SATURATION  $M_4$ Ma region,  $V_{outCM}$  must be  $\sim \frac{V_{DD}}{2}$ . • We set  $I_1$  and  $V_{ref}$ VDD For the desired V<sub>out1</sub> V<sub>out2</sub> values of  $I'_1$  and  $M_1 M_2$  $V_{outCM}$ . M<sub>12</sub> M<sub>13</sub>  $M_{9}$ ,  $I'_{1}$  $V_{\rm b}$ M 15

Common-Mode Feedback Circuit – Example 4: Preferred Solution



- CM sensing circuit rejects differential signals as long as the sensing diff. pair remains linear (out of clipping)
- Choose  $V_{eff}$  of sensing FETS large enough to sustain largest possible output swing.  $(v_{id} = V_{out1} V_{out2})$
- What can we do to support a larger output swing?
  - Use a separate averaging circuit.

- For all CMFB architectures in this lecture,
  - find the common-mode feedback circuit loop gain,
  - Allowable output swing for proper operation,
  - CMFB loop stability requirements
  - GBW of the CMFB loop
- Convert the opamp you designed in Assignment 3 in ELC401A to a fully differential one and use a CMFB to set the  $CM_{out} = \frac{V_{DD}}{2}$ .

## Review

- Important Specifications:
  - ✓ Differential DC gain
  - ✓ Common-Mode DC gain
  - ✓ GBW
  - ✓ Slew rate
  - ✓ Output common-mode range (available output swing)
  - ✓ Input common-mode range
  - ✓ Common-mode feedback loop gain
  - ✓ Power consumption
  - Input referred noise
  - Input referred offset